/// @ref core /// @file glm/detail/func_common_simd.inl #if GLM_ARCH & GLM_ARCH_SSE2_BIT #include "../simd/common.h" #include namespace glm{ namespace detail { template struct compute_abs_vector<4, float, P, vec, true> { GLM_FUNC_QUALIFIER static vec<4, float, P> call(vec<4, float, P> const & v) { vec<4, float, P> result(uninitialize); result.data = glm_vec4_abs(v.data); return result; } }; template struct compute_abs_vector<4, int, P, vec, true> { GLM_FUNC_QUALIFIER static vec<4, int, P> call(vec<4, int, P> const & v) { vec<4, int, P> result(uninitialize); result.data = glm_ivec4_abs(v.data); return result; } }; template struct compute_floor<4, float, P, vec, true> { GLM_FUNC_QUALIFIER static vec<4, float, P> call(vec<4, float, P> const & v) { vec<4, float, P> result(uninitialize); result.data = glm_vec4_floor(v.data); return result; } }; template struct compute_ceil<4, float, P, vec, true> { GLM_FUNC_QUALIFIER static vec<4, float, P> call(vec<4, float, P> const & v) { vec<4, float, P> result(uninitialize); result.data = glm_vec4_ceil(v.data); return result; } }; template struct compute_fract<4, float, P, vec, true> { GLM_FUNC_QUALIFIER static vec<4, float, P> call(vec<4, float, P> const & v) { vec<4, float, P> result(uninitialize); result.data = glm_vec4_fract(v.data); return result; } }; template struct compute_round<4, float, P, vec, true> { GLM_FUNC_QUALIFIER static vec<4, float, P> call(vec<4, float, P> const & v) { vec<4, float, P> result(uninitialize); result.data = glm_vec4_round(v.data); return result; } }; template struct compute_mod<4, float, P, vec, true> { GLM_FUNC_QUALIFIER static vec<4, float, P> call(vec<4, float, P> const & x, vec<4, float, P> const & y) { vec<4, float, P> result(uninitialize); result.data = glm_vec4_mod(x.data, y.data); return result; } }; template struct compute_min_vector<4, float, P, vec, true> { GLM_FUNC_QUALIFIER static vec<4, float, P> call(vec<4, float, P> const & v1, vec<4, float, P> const & v2) { vec<4, float, P> result(uninitialize); result.data = _mm_min_ps(v1.data, v2.data); return result; } }; template struct compute_min_vector<4, int32, P, vec, true> { GLM_FUNC_QUALIFIER static vec<4, int32, P> call(vec<4, int32, P> const & v1, vec<4, int32, P> const & v2) { vec<4, int32, P> result(uninitialize); result.data = _mm_min_epi32(v1.data, v2.data); return result; } }; template struct compute_min_vector<4, uint32, P, vec, true> { GLM_FUNC_QUALIFIER static vec<4, int32, P> call(vec<4, uint32, P> const & v1, vec<4, uint32, P> const & v2) { vec<4, uint32, P> result(uninitialize); result.data = _mm_min_epu32(v1.data, v2.data); return result; } }; template struct compute_max_vector<4, float, P, vec, true> { GLM_FUNC_QUALIFIER static vec<4, float, P> call(vec<4, float, P> const & v1, vec<4, float, P> const & v2) { vec<4, float, P> result(uninitialize); result.data = _mm_max_ps(v1.data, v2.data); return result; } }; template struct compute_max_vector<4, int32, P, vec, true> { GLM_FUNC_QUALIFIER static vec<4, int32, P> call(vec<4, int32, P> const & v1, vec<4, int32, P> const & v2) { vec<4, int32, P> result(uninitialize); result.data = _mm_max_epi32(v1.data, v2.data); return result; } }; template struct compute_max_vector<4, uint32, P, vec, true> { GLM_FUNC_QUALIFIER static vec<4, uint32, P> call(vec<4, uint32, P> const & v1, vec<4, uint32, P> const & v2) { vec<4, uint32, P> result(uninitialize); result.data = _mm_max_epu32(v1.data, v2.data); return result; } }; template struct compute_clamp_vector<4, float, P, vec, true> { GLM_FUNC_QUALIFIER static vec<4, float, P> call(vec<4, float, P> const & x, vec<4, float, P> const & minVal, vec<4, float, P> const & maxVal) { vec<4, float, P> result(uninitialize); result.data = _mm_min_ps(_mm_max_ps(x.data, minVal.data), maxVal.data); return result; } }; template struct compute_clamp_vector<4, int32, P, vec, true> { GLM_FUNC_QUALIFIER static vec<4, int32, P> call(vec<4, int32, P> const & x, vec<4, int32, P> const & minVal, vec<4, int32, P> const & maxVal) { vec<4, int32, P> result(uninitialize); result.data = _mm_min_epi32(_mm_max_epi32(x.data, minVal.data), maxVal.data); return result; } }; template struct compute_clamp_vector<4, uint32, P, vec, true> { GLM_FUNC_QUALIFIER static vec<4, uint32, P> call(vec<4, uint32, P> const & x, vec<4, uint32, P> const & minVal, vec<4, uint32, P> const & maxVal) { vec<4, uint32, P> result(uninitialize); result.data = _mm_min_epu32(_mm_max_epu32(x.data, minVal.data), maxVal.data); return result; } }; template struct compute_mix_vector<4, float, bool, P, vec, true> { GLM_FUNC_QUALIFIER static vec<4, float, P> call(vec<4, float, P> const & x, vec<4, float, P> const & y, vec<4, bool, P> const & a) { __m128i const Load = _mm_set_epi32(-(int)a.w, -(int)a.z, -(int)a.y, -(int)a.x); __m128 const Mask = _mm_castsi128_ps(Load); vec<4, float, P> Result(uninitialize); # if 0 && GLM_ARCH & GLM_ARCH_AVX Result.data = _mm_blendv_ps(x.data, y.data, Mask); # else Result.data = _mm_or_ps(_mm_and_ps(Mask, y.data), _mm_andnot_ps(Mask, x.data)); # endif return Result; } }; /* FIXME template struct compute_step_vector { GLM_FUNC_QUALIFIER static vec<4, float, P> call(vec<4, float, P> const& edge, vec<4, float, P> const& x) { vec<4, float, P> result(uninitialize); result.data = glm_vec4_step(edge.data, x.data); return result; } }; */ template struct compute_smoothstep_vector<4, float, P, vec, true> { GLM_FUNC_QUALIFIER static vec<4, float, P> call(vec<4, float, P> const& edge0, vec<4, float, P> const& edge1, vec<4, float, P> const& x) { vec<4, float, P> result(uninitialize); result.data = glm_vec4_smoothstep(edge0.data, edge1.data, x.data); return result; } }; }//namespace detail }//namespace glm #endif//GLM_ARCH & GLM_ARCH_SSE2_BIT