Initial Commit

This commit is contained in:
Pierre Cholet 2018-09-12 18:53:34 +02:00
commit 54eaed1ca0
284 changed files with 55022 additions and 0 deletions

207
glm/gtc/bitfield.hpp Normal file
View file

@ -0,0 +1,207 @@
/// @ref gtc_bitfield
/// @file glm/gtc/bitfield.hpp
///
/// @see core (dependence)
/// @see gtc_bitfield (dependence)
///
/// @defgroup gtc_bitfield GLM_GTC_bitfield
/// @ingroup gtc
///
/// @brief Allow to perform bit operations on integer values
///
/// <glm/gtc/bitfield.hpp> need to be included to use these functionalities.
#pragma once
// Dependencies
#include "../detail/setup.hpp"
#include "../detail/precision.hpp"
#include "../detail/type_int.hpp"
#include "../detail/_vectorize.hpp"
#include <limits>
#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
# pragma message("GLM: GLM_GTC_bitfield extension included")
#endif
namespace glm
{
/// @addtogroup gtc_bitfield
/// @{
/// Build a mask of 'count' bits
///
/// @see gtc_bitfield
template<typename genIUType>
GLM_FUNC_DECL genIUType mask(genIUType Bits);
/// Build a mask of 'count' bits
///
/// @see gtc_bitfield
template<typename T, precision P, template<typename, precision> class vecIUType>
GLM_FUNC_DECL vecIUType<T, P> mask(vecIUType<T, P> const & v);
/// Rotate all bits to the right. All the bits dropped in the right side are inserted back on the left side.
///
/// @see gtc_bitfield
template<typename genIUType>
GLM_FUNC_DECL genIUType bitfieldRotateRight(genIUType In, int Shift);
/// Rotate all bits to the right. All the bits dropped in the right side are inserted back on the left side.
///
/// @see gtc_bitfield
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_DECL vecType<L, T, P> bitfieldRotateRight(vecType<L, T, P> const & In, int Shift);
/// Rotate all bits to the left. All the bits dropped in the left side are inserted back on the right side.
///
/// @see gtc_bitfield
template<typename genIUType>
GLM_FUNC_DECL genIUType bitfieldRotateLeft(genIUType In, int Shift);
/// Rotate all bits to the left. All the bits dropped in the left side are inserted back on the right side.
///
/// @see gtc_bitfield
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_DECL vecType<L, T, P> bitfieldRotateLeft(vecType<L, T, P> const & In, int Shift);
/// Set to 1 a range of bits.
///
/// @see gtc_bitfield
template<typename genIUType>
GLM_FUNC_DECL genIUType bitfieldFillOne(genIUType Value, int FirstBit, int BitCount);
/// Set to 1 a range of bits.
///
/// @see gtc_bitfield
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_DECL vecType<L, T, P> bitfieldFillOne(vecType<L, T, P> const & Value, int FirstBit, int BitCount);
/// Set to 0 a range of bits.
///
/// @see gtc_bitfield
template<typename genIUType>
GLM_FUNC_DECL genIUType bitfieldFillZero(genIUType Value, int FirstBit, int BitCount);
/// Set to 0 a range of bits.
///
/// @see gtc_bitfield
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_DECL vecType<L, T, P> bitfieldFillZero(vecType<L, T, P> const & Value, int FirstBit, int BitCount);
/// Interleaves the bits of x and y.
/// The first bit is the first bit of x followed by the first bit of y.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtc_bitfield
GLM_FUNC_DECL int16 bitfieldInterleave(int8 x, int8 y);
/// Interleaves the bits of x and y.
/// The first bit is the first bit of x followed by the first bit of y.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtc_bitfield
GLM_FUNC_DECL uint16 bitfieldInterleave(uint8 x, uint8 y);
/// Interleaves the bits of x and y.
/// The first bit is the first bit of x followed by the first bit of y.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtc_bitfield
GLM_FUNC_DECL int32 bitfieldInterleave(int16 x, int16 y);
/// Interleaves the bits of x and y.
/// The first bit is the first bit of x followed by the first bit of y.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtc_bitfield
GLM_FUNC_DECL uint32 bitfieldInterleave(uint16 x, uint16 y);
/// Interleaves the bits of x and y.
/// The first bit is the first bit of x followed by the first bit of y.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtc_bitfield
GLM_FUNC_DECL int64 bitfieldInterleave(int32 x, int32 y);
/// Interleaves the bits of x and y.
/// The first bit is the first bit of x followed by the first bit of y.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtc_bitfield
GLM_FUNC_DECL uint64 bitfieldInterleave(uint32 x, uint32 y);
/// Interleaves the bits of x, y and z.
/// The first bit is the first bit of x followed by the first bit of y and the first bit of z.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtc_bitfield
GLM_FUNC_DECL int32 bitfieldInterleave(int8 x, int8 y, int8 z);
/// Interleaves the bits of x, y and z.
/// The first bit is the first bit of x followed by the first bit of y and the first bit of z.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtc_bitfield
GLM_FUNC_DECL uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z);
/// Interleaves the bits of x, y and z.
/// The first bit is the first bit of x followed by the first bit of y and the first bit of z.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtc_bitfield
GLM_FUNC_DECL int64 bitfieldInterleave(int16 x, int16 y, int16 z);
/// Interleaves the bits of x, y and z.
/// The first bit is the first bit of x followed by the first bit of y and the first bit of z.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtc_bitfield
GLM_FUNC_DECL uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z);
/// Interleaves the bits of x, y and z.
/// The first bit is the first bit of x followed by the first bit of y and the first bit of z.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtc_bitfield
GLM_FUNC_DECL int64 bitfieldInterleave(int32 x, int32 y, int32 z);
/// Interleaves the bits of x, y and z.
/// The first bit is the first bit of x followed by the first bit of y and the first bit of z.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtc_bitfield
GLM_FUNC_DECL uint64 bitfieldInterleave(uint32 x, uint32 y, uint32 z);
/// Interleaves the bits of x, y, z and w.
/// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtc_bitfield
GLM_FUNC_DECL int32 bitfieldInterleave(int8 x, int8 y, int8 z, int8 w);
/// Interleaves the bits of x, y, z and w.
/// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtc_bitfield
GLM_FUNC_DECL uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z, uint8 w);
/// Interleaves the bits of x, y, z and w.
/// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtc_bitfield
GLM_FUNC_DECL int64 bitfieldInterleave(int16 x, int16 y, int16 z, int16 w);
/// Interleaves the bits of x, y, z and w.
/// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtc_bitfield
GLM_FUNC_DECL uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z, uint16 w);
/// @}
} //namespace glm
#include "bitfield.inl"

515
glm/gtc/bitfield.inl Normal file
View file

@ -0,0 +1,515 @@
/// @ref gtc_bitfield
/// @file glm/gtc/bitfield.inl
#include "../simd/integer.h"
namespace glm{
namespace detail
{
template<typename PARAM, typename RET>
GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y);
template<typename PARAM, typename RET>
GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y, PARAM z);
template<typename PARAM, typename RET>
GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y, PARAM z, PARAM w);
template<>
GLM_FUNC_QUALIFIER glm::uint16 bitfieldInterleave(glm::uint8 x, glm::uint8 y)
{
glm::uint16 REG1(x);
glm::uint16 REG2(y);
REG1 = ((REG1 << 4) | REG1) & glm::uint16(0x0F0F);
REG2 = ((REG2 << 4) | REG2) & glm::uint16(0x0F0F);
REG1 = ((REG1 << 2) | REG1) & glm::uint16(0x3333);
REG2 = ((REG2 << 2) | REG2) & glm::uint16(0x3333);
REG1 = ((REG1 << 1) | REG1) & glm::uint16(0x5555);
REG2 = ((REG2 << 1) | REG2) & glm::uint16(0x5555);
return REG1 | (REG2 << 1);
}
template<>
GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint16 x, glm::uint16 y)
{
glm::uint32 REG1(x);
glm::uint32 REG2(y);
REG1 = ((REG1 << 8) | REG1) & glm::uint32(0x00FF00FF);
REG2 = ((REG2 << 8) | REG2) & glm::uint32(0x00FF00FF);
REG1 = ((REG1 << 4) | REG1) & glm::uint32(0x0F0F0F0F);
REG2 = ((REG2 << 4) | REG2) & glm::uint32(0x0F0F0F0F);
REG1 = ((REG1 << 2) | REG1) & glm::uint32(0x33333333);
REG2 = ((REG2 << 2) | REG2) & glm::uint32(0x33333333);
REG1 = ((REG1 << 1) | REG1) & glm::uint32(0x55555555);
REG2 = ((REG2 << 1) | REG2) & glm::uint32(0x55555555);
return REG1 | (REG2 << 1);
}
template<>
GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y)
{
glm::uint64 REG1(x);
glm::uint64 REG2(y);
REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFFull);
REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFFull);
REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FFull);
REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FFull);
REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0Full);
REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0Full);
REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333ull);
REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333ull);
REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555ull);
REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555ull);
return REG1 | (REG2 << 1);
}
template<>
GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint8 x, glm::uint8 y, glm::uint8 z)
{
glm::uint32 REG1(x);
glm::uint32 REG2(y);
glm::uint32 REG3(z);
REG1 = ((REG1 << 16) | REG1) & glm::uint32(0x00FF0000FF0000FF);
REG2 = ((REG2 << 16) | REG2) & glm::uint32(0x00FF0000FF0000FF);
REG3 = ((REG3 << 16) | REG3) & glm::uint32(0x00FF0000FF0000FF);
REG1 = ((REG1 << 8) | REG1) & glm::uint32(0xF00F00F00F00F00F);
REG2 = ((REG2 << 8) | REG2) & glm::uint32(0xF00F00F00F00F00F);
REG3 = ((REG3 << 8) | REG3) & glm::uint32(0xF00F00F00F00F00F);
REG1 = ((REG1 << 4) | REG1) & glm::uint32(0x30C30C30C30C30C3);
REG2 = ((REG2 << 4) | REG2) & glm::uint32(0x30C30C30C30C30C3);
REG3 = ((REG3 << 4) | REG3) & glm::uint32(0x30C30C30C30C30C3);
REG1 = ((REG1 << 2) | REG1) & glm::uint32(0x9249249249249249);
REG2 = ((REG2 << 2) | REG2) & glm::uint32(0x9249249249249249);
REG3 = ((REG3 << 2) | REG3) & glm::uint32(0x9249249249249249);
return REG1 | (REG2 << 1) | (REG3 << 2);
}
template<>
GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z)
{
glm::uint64 REG1(x);
glm::uint64 REG2(y);
glm::uint64 REG3(z);
REG1 = ((REG1 << 32) | REG1) & glm::uint64(0xFFFF00000000FFFFull);
REG2 = ((REG2 << 32) | REG2) & glm::uint64(0xFFFF00000000FFFFull);
REG3 = ((REG3 << 32) | REG3) & glm::uint64(0xFFFF00000000FFFFull);
REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x00FF0000FF0000FFull);
REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x00FF0000FF0000FFull);
REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x00FF0000FF0000FFull);
REG1 = ((REG1 << 8) | REG1) & glm::uint64(0xF00F00F00F00F00Full);
REG2 = ((REG2 << 8) | REG2) & glm::uint64(0xF00F00F00F00F00Full);
REG3 = ((REG3 << 8) | REG3) & glm::uint64(0xF00F00F00F00F00Full);
REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x30C30C30C30C30C3ull);
REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x30C30C30C30C30C3ull);
REG3 = ((REG3 << 4) | REG3) & glm::uint64(0x30C30C30C30C30C3ull);
REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x9249249249249249ull);
REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x9249249249249249ull);
REG3 = ((REG3 << 2) | REG3) & glm::uint64(0x9249249249249249ull);
return REG1 | (REG2 << 1) | (REG3 << 2);
}
template<>
GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y, glm::uint32 z)
{
glm::uint64 REG1(x);
glm::uint64 REG2(y);
glm::uint64 REG3(z);
REG1 = ((REG1 << 32) | REG1) & glm::uint64(0xFFFF00000000FFFFull);
REG2 = ((REG2 << 32) | REG2) & glm::uint64(0xFFFF00000000FFFFull);
REG3 = ((REG3 << 32) | REG3) & glm::uint64(0xFFFF00000000FFFFull);
REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x00FF0000FF0000FFull);
REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x00FF0000FF0000FFull);
REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x00FF0000FF0000FFull);
REG1 = ((REG1 << 8) | REG1) & glm::uint64(0xF00F00F00F00F00Full);
REG2 = ((REG2 << 8) | REG2) & glm::uint64(0xF00F00F00F00F00Full);
REG3 = ((REG3 << 8) | REG3) & glm::uint64(0xF00F00F00F00F00Full);
REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x30C30C30C30C30C3ull);
REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x30C30C30C30C30C3ull);
REG3 = ((REG3 << 4) | REG3) & glm::uint64(0x30C30C30C30C30C3ull);
REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x9249249249249249ull);
REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x9249249249249249ull);
REG3 = ((REG3 << 2) | REG3) & glm::uint64(0x9249249249249249ull);
return REG1 | (REG2 << 1) | (REG3 << 2);
}
template<>
GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint8 x, glm::uint8 y, glm::uint8 z, glm::uint8 w)
{
glm::uint32 REG1(x);
glm::uint32 REG2(y);
glm::uint32 REG3(z);
glm::uint32 REG4(w);
REG1 = ((REG1 << 12) | REG1) & glm::uint32(0x000F000F000F000F);
REG2 = ((REG2 << 12) | REG2) & glm::uint32(0x000F000F000F000F);
REG3 = ((REG3 << 12) | REG3) & glm::uint32(0x000F000F000F000F);
REG4 = ((REG4 << 12) | REG4) & glm::uint32(0x000F000F000F000F);
REG1 = ((REG1 << 6) | REG1) & glm::uint32(0x0303030303030303);
REG2 = ((REG2 << 6) | REG2) & glm::uint32(0x0303030303030303);
REG3 = ((REG3 << 6) | REG3) & glm::uint32(0x0303030303030303);
REG4 = ((REG4 << 6) | REG4) & glm::uint32(0x0303030303030303);
REG1 = ((REG1 << 3) | REG1) & glm::uint32(0x1111111111111111);
REG2 = ((REG2 << 3) | REG2) & glm::uint32(0x1111111111111111);
REG3 = ((REG3 << 3) | REG3) & glm::uint32(0x1111111111111111);
REG4 = ((REG4 << 3) | REG4) & glm::uint32(0x1111111111111111);
return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3);
}
template<>
GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z, glm::uint16 w)
{
glm::uint64 REG1(x);
glm::uint64 REG2(y);
glm::uint64 REG3(z);
glm::uint64 REG4(w);
REG1 = ((REG1 << 24) | REG1) & glm::uint64(0x000000FF000000FFull);
REG2 = ((REG2 << 24) | REG2) & glm::uint64(0x000000FF000000FFull);
REG3 = ((REG3 << 24) | REG3) & glm::uint64(0x000000FF000000FFull);
REG4 = ((REG4 << 24) | REG4) & glm::uint64(0x000000FF000000FFull);
REG1 = ((REG1 << 12) | REG1) & glm::uint64(0x000F000F000F000Full);
REG2 = ((REG2 << 12) | REG2) & glm::uint64(0x000F000F000F000Full);
REG3 = ((REG3 << 12) | REG3) & glm::uint64(0x000F000F000F000Full);
REG4 = ((REG4 << 12) | REG4) & glm::uint64(0x000F000F000F000Full);
REG1 = ((REG1 << 6) | REG1) & glm::uint64(0x0303030303030303ull);
REG2 = ((REG2 << 6) | REG2) & glm::uint64(0x0303030303030303ull);
REG3 = ((REG3 << 6) | REG3) & glm::uint64(0x0303030303030303ull);
REG4 = ((REG4 << 6) | REG4) & glm::uint64(0x0303030303030303ull);
REG1 = ((REG1 << 3) | REG1) & glm::uint64(0x1111111111111111ull);
REG2 = ((REG2 << 3) | REG2) & glm::uint64(0x1111111111111111ull);
REG3 = ((REG3 << 3) | REG3) & glm::uint64(0x1111111111111111ull);
REG4 = ((REG4 << 3) | REG4) & glm::uint64(0x1111111111111111ull);
return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3);
}
}//namespace detail
template<typename genIUType>
GLM_FUNC_QUALIFIER genIUType mask(genIUType Bits)
{
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'mask' accepts only integer values");
return Bits >= sizeof(genIUType) * 8 ? ~static_cast<genIUType>(0) : (static_cast<genIUType>(1) << Bits) - static_cast<genIUType>(1);
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecIUType>
GLM_FUNC_QUALIFIER vecIUType<L, T, P> mask(vecIUType<L, T, P> const& v)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'mask' accepts only integer values");
return detail::functor1<L, T, T, P>::call(mask, v);
}
template<typename genIType>
GLM_FUNC_QUALIFIER genIType bitfieldRotateRight(genIType In, int Shift)
{
GLM_STATIC_ASSERT(std::numeric_limits<genIType>::is_integer, "'bitfieldRotateRight' accepts only integer values");
int const BitSize = static_cast<genIType>(sizeof(genIType) * 8);
return (In << static_cast<genIType>(Shift)) | (In >> static_cast<genIType>(BitSize - Shift));
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, T, P> bitfieldRotateRight(vecType<L, T, P> const & In, int Shift)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitfieldRotateRight' accepts only integer values");
int const BitSize = static_cast<int>(sizeof(T) * 8);
return (In << static_cast<T>(Shift)) | (In >> static_cast<T>(BitSize - Shift));
}
template<typename genIType>
GLM_FUNC_QUALIFIER genIType bitfieldRotateLeft(genIType In, int Shift)
{
GLM_STATIC_ASSERT(std::numeric_limits<genIType>::is_integer, "'bitfieldRotateLeft' accepts only integer values");
int const BitSize = static_cast<genIType>(sizeof(genIType) * 8);
return (In >> static_cast<genIType>(Shift)) | (In << static_cast<genIType>(BitSize - Shift));
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, T, P> bitfieldRotateLeft(vecType<L, T, P> const& In, int Shift)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitfieldRotateLeft' accepts only integer values");
int const BitSize = static_cast<int>(sizeof(T) * 8);
return (In >> static_cast<T>(Shift)) | (In << static_cast<T>(BitSize - Shift));
}
template<typename genIUType>
GLM_FUNC_QUALIFIER genIUType bitfieldFillOne(genIUType Value, int FirstBit, int BitCount)
{
return Value | static_cast<genIUType>(mask(BitCount) << FirstBit);
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, T, P> bitfieldFillOne(vecType<L, T, P> const& Value, int FirstBit, int BitCount)
{
return Value | static_cast<T>(mask(BitCount) << FirstBit);
}
template<typename genIUType>
GLM_FUNC_QUALIFIER genIUType bitfieldFillZero(genIUType Value, int FirstBit, int BitCount)
{
return Value & static_cast<genIUType>(~(mask(BitCount) << FirstBit));
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, T, P> bitfieldFillZero(vecType<L, T, P> const& Value, int FirstBit, int BitCount)
{
return Value & static_cast<T>(~(mask(BitCount) << FirstBit));
}
GLM_FUNC_QUALIFIER int16 bitfieldInterleave(int8 x, int8 y)
{
union sign8
{
int8 i;
uint8 u;
} sign_x, sign_y;
union sign16
{
int16 i;
uint16 u;
} result;
sign_x.i = x;
sign_y.i = y;
result.u = bitfieldInterleave(sign_x.u, sign_y.u);
return result.i;
}
GLM_FUNC_QUALIFIER uint16 bitfieldInterleave(uint8 x, uint8 y)
{
return detail::bitfieldInterleave<uint8, uint16>(x, y);
}
GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int16 x, int16 y)
{
union sign16
{
int16 i;
uint16 u;
} sign_x, sign_y;
union sign32
{
int32 i;
uint32 u;
} result;
sign_x.i = x;
sign_y.i = y;
result.u = bitfieldInterleave(sign_x.u, sign_y.u);
return result.i;
}
GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint16 x, uint16 y)
{
return detail::bitfieldInterleave<uint16, uint32>(x, y);
}
GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int32 x, int32 y)
{
union sign32
{
int32 i;
uint32 u;
} sign_x, sign_y;
union sign64
{
int64 i;
uint64 u;
} result;
sign_x.i = x;
sign_y.i = y;
result.u = bitfieldInterleave(sign_x.u, sign_y.u);
return result.i;
}
GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint32 x, uint32 y)
{
return detail::bitfieldInterleave<uint32, uint64>(x, y);
}
GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int8 x, int8 y, int8 z)
{
union sign8
{
int8 i;
uint8 u;
} sign_x, sign_y, sign_z;
union sign32
{
int32 i;
uint32 u;
} result;
sign_x.i = x;
sign_y.i = y;
sign_z.i = z;
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u);
return result.i;
}
GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z)
{
return detail::bitfieldInterleave<uint8, uint32>(x, y, z);
}
GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int16 x, int16 y, int16 z)
{
union sign16
{
int16 i;
uint16 u;
} sign_x, sign_y, sign_z;
union sign64
{
int64 i;
uint64 u;
} result;
sign_x.i = x;
sign_y.i = y;
sign_z.i = z;
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u);
return result.i;
}
GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z)
{
return detail::bitfieldInterleave<uint32, uint64>(x, y, z);
}
GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int32 x, int32 y, int32 z)
{
union sign16
{
int32 i;
uint32 u;
} sign_x, sign_y, sign_z;
union sign64
{
int64 i;
uint64 u;
} result;
sign_x.i = x;
sign_y.i = y;
sign_z.i = z;
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u);
return result.i;
}
GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint32 x, uint32 y, uint32 z)
{
return detail::bitfieldInterleave<uint32, uint64>(x, y, z);
}
GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int8 x, int8 y, int8 z, int8 w)
{
union sign8
{
int8 i;
uint8 u;
} sign_x, sign_y, sign_z, sign_w;
union sign32
{
int32 i;
uint32 u;
} result;
sign_x.i = x;
sign_y.i = y;
sign_z.i = z;
sign_w.i = w;
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u, sign_w.u);
return result.i;
}
GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z, uint8 w)
{
return detail::bitfieldInterleave<uint8, uint32>(x, y, z, w);
}
GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int16 x, int16 y, int16 z, int16 w)
{
union sign16
{
int16 i;
uint16 u;
} sign_x, sign_y, sign_z, sign_w;
union sign64
{
int64 i;
uint64 u;
} result;
sign_x.i = x;
sign_y.i = y;
sign_z.i = z;
sign_w.i = w;
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u, sign_w.u);
return result.i;
}
GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z, uint16 w)
{
return detail::bitfieldInterleave<uint16, uint64>(x, y, z, w);
}
}//namespace glm

56
glm/gtc/color_space.hpp Normal file
View file

@ -0,0 +1,56 @@
/// @ref gtc_color_space
/// @file glm/gtc/color_space.hpp
///
/// @see core (dependence)
/// @see gtc_color_space (dependence)
///
/// @defgroup gtc_color_space GLM_GTC_color_space
/// @ingroup gtc
///
/// @brief Allow to perform bit operations on integer values
///
/// <glm/gtc/color_space.hpp> need to be included to use these functionalities.
#pragma once
// Dependencies
#include "../detail/setup.hpp"
#include "../detail/precision.hpp"
#include "../exponential.hpp"
#include "../vec3.hpp"
#include "../vec4.hpp"
#include <limits>
#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
# pragma message("GLM: GLM_GTC_color_space extension included")
#endif
namespace glm
{
/// @addtogroup gtc_color_space
/// @{
/// Convert a linear color to sRGB color using a standard gamma correction.
/// IEC 61966-2-1:1999 / Rec. 709 specification https://www.w3.org/Graphics/Color/srgb
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_DECL vecType<L, T, P> convertLinearToSRGB(vecType<L, T, P> const & ColorLinear);
/// Convert a linear color to sRGB color using a custom gamma correction.
/// IEC 61966-2-1:1999 / Rec. 709 specification https://www.w3.org/Graphics/Color/srgb
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_DECL vecType<L, T, P> convertLinearToSRGB(vecType<L, T, P> const & ColorLinear, T Gamma);
/// Convert a sRGB color to linear color using a standard gamma correction.
/// IEC 61966-2-1:1999 / Rec. 709 specification https://www.w3.org/Graphics/Color/srgb
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_DECL vecType<L, T, P> convertSRGBToLinear(vecType<L, T, P> const & ColorSRGB);
/// Convert a sRGB color to linear color using a custom gamma correction.
// IEC 61966-2-1:1999 / Rec. 709 specification https://www.w3.org/Graphics/Color/srgb
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_DECL vecType<L, T, P> convertSRGBToLinear(vecType<L, T, P> const & ColorSRGB, T Gamma);
/// @}
} //namespace glm
#include "color_space.inl"

85
glm/gtc/color_space.inl Normal file
View file

@ -0,0 +1,85 @@
/// @ref gtc_color_space
/// @file glm/gtc/color_space.inl
namespace glm{
namespace detail
{
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
struct compute_rgbToSrgb
{
GLM_FUNC_QUALIFIER static vecType<L, T, P> call(vecType<L, T, P> const& ColorRGB, T GammaCorrection)
{
vecType<L, T, P> const ClampedColor(clamp(ColorRGB, static_cast<T>(0), static_cast<T>(1)));
return mix(
pow(ClampedColor, vecType<L, T, P>(GammaCorrection)) * static_cast<T>(1.055) - static_cast<T>(0.055),
ClampedColor * static_cast<T>(12.92),
lessThan(ClampedColor, vecType<L, T, P>(static_cast<T>(0.0031308))));
}
};
template<typename T, precision P>
struct compute_rgbToSrgb<4, T, P, vec>
{
GLM_FUNC_QUALIFIER static vec<4, T, P> call(vec<4, T, P> const& ColorRGB, T GammaCorrection)
{
return vec<4, T, P>(compute_rgbToSrgb<3, T, P, vec>::call(vec<3, T, P>(ColorRGB), GammaCorrection), ColorRGB.w);
}
};
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
struct compute_srgbToRgb
{
GLM_FUNC_QUALIFIER static vecType<L, T, P> call(vecType<L, T, P> const& ColorSRGB, T Gamma)
{
return mix(
pow((ColorSRGB + static_cast<T>(0.055)) * static_cast<T>(0.94786729857819905213270142180095), vecType<L, T, P>(Gamma)),
ColorSRGB * static_cast<T>(0.07739938080495356037151702786378),
lessThanEqual(ColorSRGB, vecType<L, T, P>(static_cast<T>(0.04045))));
}
};
template<typename T, precision P>
struct compute_srgbToRgb<4, T, P, vec>
{
GLM_FUNC_QUALIFIER static vec<4, T, P> call(vec<4, T, P> const& ColorSRGB, T Gamma)
{
return vec<4, T, P>(compute_srgbToRgb<3, T, P, vec>::call(vec<3, T, P>(ColorSRGB), Gamma), ColorSRGB.w);
}
};
}//namespace detail
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, T, P> convertLinearToSRGB(vecType<L, T, P> const& ColorLinear)
{
return detail::compute_rgbToSrgb<L, T, P, vecType>::call(ColorLinear, static_cast<T>(0.41666));
}
// Based on Ian Taylor http://chilliant.blogspot.fr/2012/08/srgb-approximations-for-hlsl.html
template<>
GLM_FUNC_QUALIFIER vec<3, float, lowp> convertLinearToSRGB(vec<3, float, lowp> const& ColorLinear)
{
vec<3, float, lowp> S1 = sqrt(ColorLinear);
vec<3, float, lowp> S2 = sqrt(S1);
vec<3, float, lowp> S3 = sqrt(S2);
return 0.662002687f * S1 + 0.684122060f * S2 - 0.323583601f * S3 - 0.0225411470f * ColorLinear;
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, T, P> convertLinearToSRGB(vecType<L, T, P> const& ColorLinear, T Gamma)
{
return detail::compute_rgbToSrgb<L, T, P, vecType>::call(ColorLinear, static_cast<T>(1) / Gamma);
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, T, P> convertSRGBToLinear(vecType<L, T, P> const& ColorSRGB)
{
return detail::compute_srgbToRgb<L, T, P, vecType>::call(ColorSRGB, static_cast<T>(2.4));
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, T, P> convertSRGBToLinear(vecType<L, T, P> const& ColorSRGB, T Gamma)
{
return detail::compute_srgbToRgb<L, T, P, vecType>::call(ColorSRGB, Gamma);
}
}//namespace glm

175
glm/gtc/constants.hpp Normal file
View file

@ -0,0 +1,175 @@
/// @ref gtc_constants
/// @file glm/gtc/constants.hpp
///
/// @see core (dependence)
///
/// @defgroup gtc_constants GLM_GTC_constants
/// @ingroup gtc
///
/// @brief Provide a list of constants and precomputed useful values.
///
/// <glm/gtc/constants.hpp> need to be included to use these features.
#pragma once
// Dependencies
#include "../detail/setup.hpp"
#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
# pragma message("GLM: GLM_GTC_constants extension included")
#endif
namespace glm
{
/// @addtogroup gtc_constants
/// @{
/// Return the epsilon constant for floating point types.
/// @see gtc_constants
template<typename genType>
GLM_FUNC_DECL GLM_CONSTEXPR genType epsilon();
/// Return 0.
/// @see gtc_constants
template<typename genType>
GLM_FUNC_DECL GLM_CONSTEXPR genType zero();
/// Return 1.
/// @see gtc_constants
template<typename genType>
GLM_FUNC_DECL GLM_CONSTEXPR genType one();
/// Return the pi constant.
/// @see gtc_constants
template<typename genType>
GLM_FUNC_DECL GLM_CONSTEXPR genType pi();
/// Return pi * 2.
/// @see gtc_constants
template<typename genType>
GLM_FUNC_DECL GLM_CONSTEXPR genType two_pi();
/// Return square root of pi.
/// @see gtc_constants
template<typename genType>
GLM_FUNC_DECL GLM_CONSTEXPR genType root_pi();
/// Return pi / 2.
/// @see gtc_constants
template<typename genType>
GLM_FUNC_DECL GLM_CONSTEXPR genType half_pi();
/// Return pi / 2 * 3.
/// @see gtc_constants
template<typename genType>
GLM_FUNC_DECL GLM_CONSTEXPR genType three_over_two_pi();
/// Return pi / 4.
/// @see gtc_constants
template<typename genType>
GLM_FUNC_DECL GLM_CONSTEXPR genType quarter_pi();
/// Return 1 / pi.
/// @see gtc_constants
template<typename genType>
GLM_FUNC_DECL GLM_CONSTEXPR genType one_over_pi();
/// Return 1 / (pi * 2).
/// @see gtc_constants
template<typename genType>
GLM_FUNC_DECL GLM_CONSTEXPR genType one_over_two_pi();
/// Return 2 / pi.
/// @see gtc_constants
template<typename genType>
GLM_FUNC_DECL GLM_CONSTEXPR genType two_over_pi();
/// Return 4 / pi.
/// @see gtc_constants
template<typename genType>
GLM_FUNC_DECL GLM_CONSTEXPR genType four_over_pi();
/// Return 2 / sqrt(pi).
/// @see gtc_constants
template<typename genType>
GLM_FUNC_DECL GLM_CONSTEXPR genType two_over_root_pi();
/// Return 1 / sqrt(2).
/// @see gtc_constants
template<typename genType>
GLM_FUNC_DECL GLM_CONSTEXPR genType one_over_root_two();
/// Return sqrt(pi / 2).
/// @see gtc_constants
template<typename genType>
GLM_FUNC_DECL GLM_CONSTEXPR genType root_half_pi();
/// Return sqrt(2 * pi).
/// @see gtc_constants
template<typename genType>
GLM_FUNC_DECL GLM_CONSTEXPR genType root_two_pi();
/// Return sqrt(ln(4)).
/// @see gtc_constants
template<typename genType>
GLM_FUNC_DECL GLM_CONSTEXPR genType root_ln_four();
/// Return e constant.
/// @see gtc_constants
template<typename genType>
GLM_FUNC_DECL GLM_CONSTEXPR genType e();
/// Return Euler's constant.
/// @see gtc_constants
template<typename genType>
GLM_FUNC_DECL GLM_CONSTEXPR genType euler();
/// Return sqrt(2).
/// @see gtc_constants
template<typename genType>
GLM_FUNC_DECL GLM_CONSTEXPR genType root_two();
/// Return sqrt(3).
/// @see gtc_constants
template<typename genType>
GLM_FUNC_DECL GLM_CONSTEXPR genType root_three();
/// Return sqrt(5).
/// @see gtc_constants
template<typename genType>
GLM_FUNC_DECL GLM_CONSTEXPR genType root_five();
/// Return ln(2).
/// @see gtc_constants
template<typename genType>
GLM_FUNC_DECL GLM_CONSTEXPR genType ln_two();
/// Return ln(10).
/// @see gtc_constants
template<typename genType>
GLM_FUNC_DECL GLM_CONSTEXPR genType ln_ten();
/// Return ln(ln(2)).
/// @see gtc_constants
template<typename genType>
GLM_FUNC_DECL GLM_CONSTEXPR genType ln_ln_two();
/// Return 1 / 3.
/// @see gtc_constants
template<typename genType>
GLM_FUNC_DECL GLM_CONSTEXPR genType third();
/// Return 2 / 3.
/// @see gtc_constants
template<typename genType>
GLM_FUNC_DECL GLM_CONSTEXPR genType two_thirds();
/// Return the golden ratio constant.
/// @see gtc_constants
template<typename genType>
GLM_FUNC_DECL GLM_CONSTEXPR genType golden_ratio();
/// @}
} //namespace glm
#include "constants.inl"

181
glm/gtc/constants.inl Normal file
View file

@ -0,0 +1,181 @@
/// @ref gtc_constants
/// @file glm/gtc/constants.inl
#include <limits>
namespace glm
{
template<typename genType>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType epsilon()
{
return std::numeric_limits<genType>::epsilon();
}
template<typename genType>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType zero()
{
return genType(0);
}
template<typename genType>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType one()
{
return genType(1);
}
template<typename genType>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType pi()
{
return genType(3.14159265358979323846264338327950288);
}
template<typename genType>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType two_pi()
{
return genType(6.28318530717958647692528676655900576);
}
template<typename genType>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_pi()
{
return genType(1.772453850905516027);
}
template<typename genType>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType half_pi()
{
return genType(1.57079632679489661923132169163975144);
}
template<typename genType>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType three_over_two_pi()
{
return genType(4.71238898038468985769396507491925432);
}
template<typename genType>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType quarter_pi()
{
return genType(0.785398163397448309615660845819875721);
}
template<typename genType>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType one_over_pi()
{
return genType(0.318309886183790671537767526745028724);
}
template<typename genType>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType one_over_two_pi()
{
return genType(0.159154943091895335768883763372514362);
}
template<typename genType>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType two_over_pi()
{
return genType(0.636619772367581343075535053490057448);
}
template<typename genType>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType four_over_pi()
{
return genType(1.273239544735162686151070106980114898);
}
template<typename genType>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType two_over_root_pi()
{
return genType(1.12837916709551257389615890312154517);
}
template<typename genType>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType one_over_root_two()
{
return genType(0.707106781186547524400844362104849039);
}
template<typename genType>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_half_pi()
{
return genType(1.253314137315500251);
}
template<typename genType>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_two_pi()
{
return genType(2.506628274631000502);
}
template<typename genType>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_ln_four()
{
return genType(1.17741002251547469);
}
template<typename genType>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType e()
{
return genType(2.71828182845904523536);
}
template<typename genType>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType euler()
{
return genType(0.577215664901532860606);
}
template<typename genType>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_two()
{
return genType(1.41421356237309504880168872420969808);
}
template<typename genType>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_three()
{
return genType(1.73205080756887729352744634150587236);
}
template<typename genType>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_five()
{
return genType(2.23606797749978969640917366873127623);
}
template<typename genType>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType ln_two()
{
return genType(0.693147180559945309417232121458176568);
}
template<typename genType>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType ln_ten()
{
return genType(2.30258509299404568401799145468436421);
}
template<typename genType>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType ln_ln_two()
{
return genType(-0.3665129205816643);
}
template<typename genType>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType third()
{
return genType(0.3333333333333333333333333333333333333333);
}
template<typename genType>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType two_thirds()
{
return genType(0.666666666666666666666666666666666666667);
}
template<typename genType>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType golden_ratio()
{
return genType(1.61803398874989484820458683436563811);
}
} //namespace glm

72
glm/gtc/epsilon.hpp Normal file
View file

@ -0,0 +1,72 @@
/// @ref gtc_epsilon
/// @file glm/gtc/epsilon.hpp
///
/// @see core (dependence)
/// @see gtc_quaternion (dependence)
///
/// @defgroup gtc_epsilon GLM_GTC_epsilon
/// @ingroup gtc
///
/// @brief Comparison functions for a user defined epsilon values.
///
/// <glm/gtc/epsilon.hpp> need to be included to use these functionalities.
#pragma once
// Dependencies
#include "../detail/setup.hpp"
#include "../detail/precision.hpp"
#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
# pragma message("GLM: GLM_GTC_epsilon extension included")
#endif
namespace glm
{
/// @addtogroup gtc_epsilon
/// @{
/// Returns the component-wise comparison of |x - y| < epsilon.
/// True if this expression is satisfied.
///
/// @see gtc_epsilon
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_DECL vecType<L, bool, P> epsilonEqual(
vecType<L, T, P> const& x,
vecType<L, T, P> const& y,
T const & epsilon);
/// Returns the component-wise comparison of |x - y| < epsilon.
/// True if this expression is satisfied.
///
/// @see gtc_epsilon
template<typename genType>
GLM_FUNC_DECL bool epsilonEqual(
genType const & x,
genType const & y,
genType const & epsilon);
/// Returns the component-wise comparison of |x - y| < epsilon.
/// True if this expression is not satisfied.
///
/// @see gtc_epsilon
template<typename genType>
GLM_FUNC_DECL typename genType::boolType epsilonNotEqual(
genType const & x,
genType const & y,
typename genType::value_type const & epsilon);
/// Returns the component-wise comparison of |x - y| >= epsilon.
/// True if this expression is not satisfied.
///
/// @see gtc_epsilon
template<typename genType>
GLM_FUNC_DECL bool epsilonNotEqual(
genType const & x,
genType const & y,
genType const & epsilon);
/// @}
}//namespace glm
#include "epsilon.inl"

125
glm/gtc/epsilon.inl Normal file
View file

@ -0,0 +1,125 @@
/// @ref gtc_epsilon
/// @file glm/gtc/epsilon.inl
// Dependency:
#include "quaternion.hpp"
#include "../vector_relational.hpp"
#include "../common.hpp"
#include "../vec2.hpp"
#include "../vec3.hpp"
#include "../vec4.hpp"
namespace glm
{
template<>
GLM_FUNC_QUALIFIER bool epsilonEqual
(
float const & x,
float const & y,
float const & epsilon
)
{
return abs(x - y) < epsilon;
}
template<>
GLM_FUNC_QUALIFIER bool epsilonEqual
(
double const & x,
double const & y,
double const & epsilon
)
{
return abs(x - y) < epsilon;
}
template<>
GLM_FUNC_QUALIFIER bool epsilonNotEqual
(
float const & x,
float const & y,
float const & epsilon
)
{
return abs(x - y) >= epsilon;
}
template<>
GLM_FUNC_QUALIFIER bool epsilonNotEqual
(
double const & x,
double const & y,
double const & epsilon
)
{
return abs(x - y) >= epsilon;
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, bool, P> epsilonEqual
(
vecType<L, T, P> const& x,
vecType<L, T, P> const& y,
T const & epsilon
)
{
return lessThan(abs(x - y), vecType<L, T, P>(epsilon));
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, bool, P> epsilonEqual
(
vecType<L, T, P> const& x,
vecType<L, T, P> const& y,
vecType<L, T, P> const& epsilon
)
{
return lessThan(abs(x - y), vecType<L, T, P>(epsilon));
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, bool, P> epsilonNotEqual
(
vecType<L, T, P> const& x,
vecType<L, T, P> const& y,
T const & epsilon
)
{
return greaterThanEqual(abs(x - y), vecType<L, T, P>(epsilon));
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, bool, P> epsilonNotEqual
(
vecType<L, T, P> const& x,
vecType<L, T, P> const& y,
vecType<L, T, P> const& epsilon
)
{
return greaterThanEqual(abs(x - y), vecType<L, T, P>(epsilon));
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER vec<4, bool, P> epsilonEqual
(
tquat<T, P> const & x,
tquat<T, P> const & y,
T const & epsilon
)
{
vec<4, T, P> v(x.x - y.x, x.y - y.y, x.z - y.z, x.w - y.w);
return lessThan(abs(v), vec<4, T, P>(epsilon));
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER vec<4, bool, P> epsilonNotEqual
(
tquat<T, P> const & x,
tquat<T, P> const & y,
T const & epsilon
)
{
vec<4, T, P> v(x.x - y.x, x.y - y.y, x.z - y.z, x.w - y.w);
return greaterThanEqual(abs(v), vec<4, T, P>(epsilon));
}
}//namespace glm

52
glm/gtc/functions.hpp Normal file
View file

@ -0,0 +1,52 @@
/// @ref gtc_functions
/// @file glm/gtc/functions.hpp
///
/// @see core (dependence)
/// @see gtc_quaternion (dependence)
///
/// @defgroup gtc_functions GLM_GTC_functions
/// @ingroup gtc
///
/// @brief List of useful common functions.
///
/// <glm/gtc/functions.hpp> need to be included to use these functionalities.
#pragma once
// Dependencies
#include "../detail/setup.hpp"
#include "../detail/precision.hpp"
#include "../detail/type_vec2.hpp"
#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
# pragma message("GLM: GLM_GTC_functions extension included")
#endif
namespace glm
{
/// @addtogroup gtc_functions
/// @{
/// 1D gauss function
///
/// @see gtc_epsilon
template<typename T>
GLM_FUNC_DECL T gauss(
T x,
T ExpectedValue,
T StandardDeviation);
/// 2D gauss function
///
/// @see gtc_epsilon
template<typename T, precision P>
GLM_FUNC_DECL T gauss(
vec<2, T, P> const& Coord,
vec<2, T, P> const& ExpectedValue,
vec<2, T, P> const& StandardDeviation);
/// @}
}//namespace glm
#include "functions.inl"

31
glm/gtc/functions.inl Normal file
View file

@ -0,0 +1,31 @@
/// @ref gtc_functions
/// @file glm/gtc/functions.inl
#include "../detail/func_exponential.hpp"
namespace glm
{
template<typename T>
GLM_FUNC_QUALIFIER T gauss
(
T x,
T ExpectedValue,
T StandardDeviation
)
{
return exp(-((x - ExpectedValue) * (x - ExpectedValue)) / (static_cast<T>(2) * StandardDeviation * StandardDeviation)) / (StandardDeviation * sqrt(static_cast<T>(6.28318530717958647692528676655900576)));
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER T gauss
(
vec<2, T, P> const& Coord,
vec<2, T, P> const& ExpectedValue,
vec<2, T, P> const& StandardDeviation
)
{
vec<2, T, P> const Squared = ((Coord - ExpectedValue) * (Coord - ExpectedValue)) / (static_cast<T>(2) * StandardDeviation * StandardDeviation);
return exp(-(Squared.x + Squared.y));
}
}//namespace glm

102
glm/gtc/integer.hpp Normal file
View file

@ -0,0 +1,102 @@
/// @ref gtc_integer
/// @file glm/gtc/integer.hpp
///
/// @see core (dependence)
/// @see gtc_integer (dependence)
///
/// @defgroup gtc_integer GLM_GTC_integer
/// @ingroup gtc
///
/// @brief Allow to perform bit operations on integer values
///
/// <glm/gtc/integer.hpp> need to be included to use these functionalities.
#pragma once
// Dependencies
#include "../detail/setup.hpp"
#include "../detail/precision.hpp"
#include "../detail/func_common.hpp"
#include "../detail/func_integer.hpp"
#include "../detail/func_exponential.hpp"
#include <limits>
#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
# pragma message("GLM: GLM_GTC_integer extension included")
#endif
namespace glm
{
/// @addtogroup gtc_integer
/// @{
/// Returns the log2 of x for integer values. Can be reliably using to compute mipmap count from the texture size.
/// @see gtc_integer
template<typename genIUType>
GLM_FUNC_DECL genIUType log2(genIUType x);
/// Modulus. Returns x % y
/// for each component in x using the floating point value y.
///
/// @tparam genIUType Integer-point scalar or vector types.
///
/// @see gtc_integer
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/mod.xml">GLSL mod man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
template<typename genIUType>
GLM_FUNC_DECL genIUType mod(genIUType x, genIUType y);
/// Modulus. Returns x % y
/// for each component in x using the floating point value y.
///
/// @tparam T Integer scalar types.
/// @tparam vecType vector types.
///
/// @see gtc_integer
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/mod.xml">GLSL mod man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_DECL vecType<L, T, P> mod(vecType<L, T, P> const & x, T y);
/// Modulus. Returns x % y
/// for each component in x using the floating point value y.
///
/// @tparam T Integer scalar types.
/// @tparam vecType vector types.
///
/// @see gtc_integer
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/mod.xml">GLSL mod man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_DECL vecType<L, T, P> mod(vecType<L, T, P> const & x, vecType<L, T, P> const & y);
/// Returns a value equal to the nearest integer to x.
/// The fraction 0.5 will round in a direction chosen by the
/// implementation, presumably the direction that is fastest.
///
/// @param x The values of the argument must be greater or equal to zero.
/// @tparam T floating point scalar types.
/// @tparam vecType vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/round.xml">GLSL round man page</a>
/// @see gtc_integer
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_DECL vecType<L, int, P> iround(vecType<L, T, P> const & x);
/// Returns a value equal to the nearest integer to x.
/// The fraction 0.5 will round in a direction chosen by the
/// implementation, presumably the direction that is fastest.
///
/// @param x The values of the argument must be greater or equal to zero.
/// @tparam T floating point scalar types.
/// @tparam vecType vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/round.xml">GLSL round man page</a>
/// @see gtc_integer
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_DECL vecType<L, uint, P> uround(vecType<L, T, P> const & x);
/// @}
} //namespace glm
#include "integer.inl"

71
glm/gtc/integer.inl Normal file
View file

@ -0,0 +1,71 @@
/// @ref gtc_integer
/// @file glm/gtc/integer.inl
namespace glm{
namespace detail
{
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType, bool Aligned>
struct compute_log2<L, T, P, vecType, false, Aligned>
{
GLM_FUNC_QUALIFIER static vecType<L, T, P> call(vecType<L, T, P> const& v)
{
//Equivalent to return findMSB(vec); but save one function call in ASM with VC
//return findMSB(vec);
return vecType<L, T, P>(detail::compute_findMSB_vec<L, T, P, vecType, sizeof(T) * 8>::call(v));
}
};
# if GLM_HAS_BITSCAN_WINDOWS
template<precision P, bool Aligned>
struct compute_log2<4, int, P, vec, false, Aligned>
{
GLM_FUNC_QUALIFIER static vec<4, int, P> call(vec<4, int, P> const& v)
{
vec<4, int, P> Result(glm::uninitialize);
_BitScanReverse(reinterpret_cast<unsigned long*>(&Result.x), v.x);
_BitScanReverse(reinterpret_cast<unsigned long*>(&Result.y), v.y);
_BitScanReverse(reinterpret_cast<unsigned long*>(&Result.z), v.z);
_BitScanReverse(reinterpret_cast<unsigned long*>(&Result.w), v.w);
return Result;
}
};
# endif//GLM_HAS_BITSCAN_WINDOWS
}//namespace detail
template<typename genType>
GLM_FUNC_QUALIFIER int iround(genType x)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'iround' only accept floating-point inputs");
assert(static_cast<genType>(0.0) <= x);
return static_cast<int>(x + static_cast<genType>(0.5));
}
template<glm::length_t L, typename T, precision P, template<glm::length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, int, P> iround(vecType<L, T, P> const& x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'iround' only accept floating-point inputs");
assert(all(lessThanEqual(vecType<L, T, P>(0), x)));
return vecType<L, int, P>(x + static_cast<T>(0.5));
}
template<typename genType>
GLM_FUNC_QUALIFIER uint uround(genType x)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'uround' only accept floating-point inputs");
assert(static_cast<genType>(0.0) <= x);
return static_cast<uint>(x + static_cast<genType>(0.5));
}
template<glm::length_t L, typename T, precision P, template<glm::length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, uint, P> uround(vecType<L, T, P> const& x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'uround' only accept floating-point inputs");
assert(all(lessThanEqual(vecType<L, T, P>(0), x)));
return vecType<L, uint, P>(x + static_cast<T>(0.5));
}
}//namespace glm

59
glm/gtc/matrix_access.hpp Normal file
View file

@ -0,0 +1,59 @@
/// @ref gtc_matrix_access
/// @file glm/gtc/matrix_access.hpp
///
/// @see core (dependence)
///
/// @defgroup gtc_matrix_access GLM_GTC_matrix_access
/// @ingroup gtc
///
/// Defines functions to access rows or columns of a matrix easily.
/// <glm/gtc/matrix_access.hpp> need to be included to use these functionalities.
#pragma once
// Dependency:
#include "../detail/setup.hpp"
#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
# pragma message("GLM: GLM_GTC_matrix_access extension included")
#endif
namespace glm
{
/// @addtogroup gtc_matrix_access
/// @{
/// Get a specific row of a matrix.
/// @see gtc_matrix_access
template<typename genType>
GLM_FUNC_DECL typename genType::row_type row(
genType const & m,
length_t index);
/// Set a specific row to a matrix.
/// @see gtc_matrix_access
template<typename genType>
GLM_FUNC_DECL genType row(
genType const & m,
length_t index,
typename genType::row_type const & x);
/// Get a specific column of a matrix.
/// @see gtc_matrix_access
template<typename genType>
GLM_FUNC_DECL typename genType::col_type column(
genType const & m,
length_t index);
/// Set a specific column to a matrix.
/// @see gtc_matrix_access
template<typename genType>
GLM_FUNC_DECL genType column(
genType const & m,
length_t index,
typename genType::col_type const & x);
/// @}
}//namespace glm
#include "matrix_access.inl"

63
glm/gtc/matrix_access.inl Normal file
View file

@ -0,0 +1,63 @@
/// @ref gtc_matrix_access
/// @file glm/gtc/matrix_access.inl
namespace glm
{
template<typename genType>
GLM_FUNC_QUALIFIER genType row
(
genType const & m,
length_t index,
typename genType::row_type const & x
)
{
assert(index >= 0 && index < m[0].length());
genType Result = m;
for(length_t i = 0; i < m.length(); ++i)
Result[i][index] = x[i];
return Result;
}
template<typename genType>
GLM_FUNC_QUALIFIER typename genType::row_type row
(
genType const & m,
length_t index
)
{
assert(index >= 0 && index < m[0].length());
typename genType::row_type Result;
for(length_t i = 0; i < m.length(); ++i)
Result[i] = m[i][index];
return Result;
}
template<typename genType>
GLM_FUNC_QUALIFIER genType column
(
genType const & m,
length_t index,
typename genType::col_type const & x
)
{
assert(index >= 0 && index < m.length());
genType Result = m;
Result[index] = x;
return Result;
}
template<typename genType>
GLM_FUNC_QUALIFIER typename genType::col_type column
(
genType const & m,
length_t index
)
{
assert(index >= 0 && index < m.length());
return m[index];
}
}//namespace glm

486
glm/gtc/matrix_integer.hpp Normal file
View file

@ -0,0 +1,486 @@
/// @ref gtc_matrix_integer
/// @file glm/gtc/matrix_integer.hpp
///
/// @see core (dependence)
///
/// @defgroup gtc_matrix_integer GLM_GTC_matrix_integer
/// @ingroup gtc
///
/// Defines a number of matrices with integer types.
/// <glm/gtc/matrix_integer.hpp> need to be included to use these functionalities.
#pragma once
// Dependency:
#include "../mat2x2.hpp"
#include "../mat2x3.hpp"
#include "../mat2x4.hpp"
#include "../mat3x2.hpp"
#include "../mat3x3.hpp"
#include "../mat3x4.hpp"
#include "../mat4x2.hpp"
#include "../mat4x3.hpp"
#include "../mat4x4.hpp"
#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
# pragma message("GLM: GLM_GTC_matrix_integer extension included")
#endif
namespace glm
{
/// @addtogroup gtc_matrix_integer
/// @{
/// High-precision signed integer 2x2 matrix.
/// @see gtc_matrix_integer
typedef mat<2, 2, int, highp> highp_imat2;
/// High-precision signed integer 3x3 matrix.
/// @see gtc_matrix_integer
typedef mat<3, 3, int, highp> highp_imat3;
/// High-precision signed integer 4x4 matrix.
/// @see gtc_matrix_integer
typedef mat<4, 4, int, highp> highp_imat4;
/// High-precision signed integer 2x2 matrix.
/// @see gtc_matrix_integer
typedef mat<2, 2, int, highp> highp_imat2x2;
/// High-precision signed integer 2x3 matrix.
/// @see gtc_matrix_integer
typedef mat<2, 3, int, highp> highp_imat2x3;
/// High-precision signed integer 2x4 matrix.
/// @see gtc_matrix_integer
typedef mat<2, 4, int, highp> highp_imat2x4;
/// High-precision signed integer 3x2 matrix.
/// @see gtc_matrix_integer
typedef mat<3, 2, int, highp> highp_imat3x2;
/// High-precision signed integer 3x3 matrix.
/// @see gtc_matrix_integer
typedef mat<3, 3, int, highp> highp_imat3x3;
/// High-precision signed integer 3x4 matrix.
/// @see gtc_matrix_integer
typedef mat<3, 4, int, highp> highp_imat3x4;
/// High-precision signed integer 4x2 matrix.
/// @see gtc_matrix_integer
typedef mat<4, 2, int, highp> highp_imat4x2;
/// High-precision signed integer 4x3 matrix.
/// @see gtc_matrix_integer
typedef mat<4, 3, int, highp> highp_imat4x3;
/// High-precision signed integer 4x4 matrix.
/// @see gtc_matrix_integer
typedef mat<4, 4, int, highp> highp_imat4x4;
/// Medium-precision signed integer 2x2 matrix.
/// @see gtc_matrix_integer
typedef mat<2, 2, int, mediump> mediump_imat2;
/// Medium-precision signed integer 3x3 matrix.
/// @see gtc_matrix_integer
typedef mat<3, 3, int, mediump> mediump_imat3;
/// Medium-precision signed integer 4x4 matrix.
/// @see gtc_matrix_integer
typedef mat<4, 4, int, mediump> mediump_imat4;
/// Medium-precision signed integer 2x2 matrix.
/// @see gtc_matrix_integer
typedef mat<2, 2, int, mediump> mediump_imat2x2;
/// Medium-precision signed integer 2x3 matrix.
/// @see gtc_matrix_integer
typedef mat<2, 3, int, mediump> mediump_imat2x3;
/// Medium-precision signed integer 2x4 matrix.
/// @see gtc_matrix_integer
typedef mat<2, 4, int, mediump> mediump_imat2x4;
/// Medium-precision signed integer 3x2 matrix.
/// @see gtc_matrix_integer
typedef mat<3, 2, int, mediump> mediump_imat3x2;
/// Medium-precision signed integer 3x3 matrix.
/// @see gtc_matrix_integer
typedef mat<3, 3, int, mediump> mediump_imat3x3;
/// Medium-precision signed integer 3x4 matrix.
/// @see gtc_matrix_integer
typedef mat<3, 4, int, mediump> mediump_imat3x4;
/// Medium-precision signed integer 4x2 matrix.
/// @see gtc_matrix_integer
typedef mat<4, 2, int, mediump> mediump_imat4x2;
/// Medium-precision signed integer 4x3 matrix.
/// @see gtc_matrix_integer
typedef mat<4, 3, int, mediump> mediump_imat4x3;
/// Medium-precision signed integer 4x4 matrix.
/// @see gtc_matrix_integer
typedef mat<4, 4, int, mediump> mediump_imat4x4;
/// Low-precision signed integer 2x2 matrix.
/// @see gtc_matrix_integer
typedef mat<2, 2, int, lowp> lowp_imat2;
/// Low-precision signed integer 3x3 matrix.
/// @see gtc_matrix_integer
typedef mat<3, 3, int, lowp> lowp_imat3;
/// Low-precision signed integer 4x4 matrix.
/// @see gtc_matrix_integer
typedef mat<4, 4, int, lowp> lowp_imat4;
/// Low-precision signed integer 2x2 matrix.
/// @see gtc_matrix_integer
typedef mat<2, 2, int, lowp> lowp_imat2x2;
/// Low-precision signed integer 2x3 matrix.
/// @see gtc_matrix_integer
typedef mat<2, 3, int, lowp> lowp_imat2x3;
/// Low-precision signed integer 2x4 matrix.
/// @see gtc_matrix_integer
typedef mat<2, 4, int, lowp> lowp_imat2x4;
/// Low-precision signed integer 3x2 matrix.
/// @see gtc_matrix_integer
typedef mat<3, 2, int, lowp> lowp_imat3x2;
/// Low-precision signed integer 3x3 matrix.
/// @see gtc_matrix_integer
typedef mat<3, 3, int, lowp> lowp_imat3x3;
/// Low-precision signed integer 3x4 matrix.
/// @see gtc_matrix_integer
typedef mat<3, 4, int, lowp> lowp_imat3x4;
/// Low-precision signed integer 4x2 matrix.
/// @see gtc_matrix_integer
typedef mat<4, 2, int, lowp> lowp_imat4x2;
/// Low-precision signed integer 4x3 matrix.
/// @see gtc_matrix_integer
typedef mat<4, 3, int, lowp> lowp_imat4x3;
/// Low-precision signed integer 4x4 matrix.
/// @see gtc_matrix_integer
typedef mat<4, 4, int, lowp> lowp_imat4x4;
/// High-precision unsigned integer 2x2 matrix.
/// @see gtc_matrix_integer
typedef mat<2, 2, uint, highp> highp_umat2;
/// High-precision unsigned integer 3x3 matrix.
/// @see gtc_matrix_integer
typedef mat<3, 3, uint, highp> highp_umat3;
/// High-precision unsigned integer 4x4 matrix.
/// @see gtc_matrix_integer
typedef mat<4, 4, uint, highp> highp_umat4;
/// High-precision unsigned integer 2x2 matrix.
/// @see gtc_matrix_integer
typedef mat<2, 2, uint, highp> highp_umat2x2;
/// High-precision unsigned integer 2x3 matrix.
/// @see gtc_matrix_integer
typedef mat<2, 3, uint, highp> highp_umat2x3;
/// High-precision unsigned integer 2x4 matrix.
/// @see gtc_matrix_integer
typedef mat<2, 4, uint, highp> highp_umat2x4;
/// High-precision unsigned integer 3x2 matrix.
/// @see gtc_matrix_integer
typedef mat<3, 2, uint, highp> highp_umat3x2;
/// High-precision unsigned integer 3x3 matrix.
/// @see gtc_matrix_integer
typedef mat<3, 3, uint, highp> highp_umat3x3;
/// High-precision unsigned integer 3x4 matrix.
/// @see gtc_matrix_integer
typedef mat<3, 4, uint, highp> highp_umat3x4;
/// High-precision unsigned integer 4x2 matrix.
/// @see gtc_matrix_integer
typedef mat<4, 2, uint, highp> highp_umat4x2;
/// High-precision unsigned integer 4x3 matrix.
/// @see gtc_matrix_integer
typedef mat<4, 3, uint, highp> highp_umat4x3;
/// High-precision unsigned integer 4x4 matrix.
/// @see gtc_matrix_integer
typedef mat<4, 4, uint, highp> highp_umat4x4;
/// Medium-precision unsigned integer 2x2 matrix.
/// @see gtc_matrix_integer
typedef mat<2, 2, uint, mediump> mediump_umat2;
/// Medium-precision unsigned integer 3x3 matrix.
/// @see gtc_matrix_integer
typedef mat<3, 3, uint, mediump> mediump_umat3;
/// Medium-precision unsigned integer 4x4 matrix.
/// @see gtc_matrix_integer
typedef mat<4, 4, uint, mediump> mediump_umat4;
/// Medium-precision unsigned integer 2x2 matrix.
/// @see gtc_matrix_integer
typedef mat<2, 2, uint, mediump> mediump_umat2x2;
/// Medium-precision unsigned integer 2x3 matrix.
/// @see gtc_matrix_integer
typedef mat<2, 3, uint, mediump> mediump_umat2x3;
/// Medium-precision unsigned integer 2x4 matrix.
/// @see gtc_matrix_integer
typedef mat<2, 4, uint, mediump> mediump_umat2x4;
/// Medium-precision unsigned integer 3x2 matrix.
/// @see gtc_matrix_integer
typedef mat<3, 2, uint, mediump> mediump_umat3x2;
/// Medium-precision unsigned integer 3x3 matrix.
/// @see gtc_matrix_integer
typedef mat<3, 3, uint, mediump> mediump_umat3x3;
/// Medium-precision unsigned integer 3x4 matrix.
/// @see gtc_matrix_integer
typedef mat<3, 4, uint, mediump> mediump_umat3x4;
/// Medium-precision unsigned integer 4x2 matrix.
/// @see gtc_matrix_integer
typedef mat<4, 2, uint, mediump> mediump_umat4x2;
/// Medium-precision unsigned integer 4x3 matrix.
/// @see gtc_matrix_integer
typedef mat<4, 3, uint, mediump> mediump_umat4x3;
/// Medium-precision unsigned integer 4x4 matrix.
/// @see gtc_matrix_integer
typedef mat<4, 4, uint, mediump> mediump_umat4x4;
/// Low-precision unsigned integer 2x2 matrix.
/// @see gtc_matrix_integer
typedef mat<2, 2, uint, lowp> lowp_umat2;
/// Low-precision unsigned integer 3x3 matrix.
/// @see gtc_matrix_integer
typedef mat<3, 3, uint, lowp> lowp_umat3;
/// Low-precision unsigned integer 4x4 matrix.
/// @see gtc_matrix_integer
typedef mat<4, 4, uint, lowp> lowp_umat4;
/// Low-precision unsigned integer 2x2 matrix.
/// @see gtc_matrix_integer
typedef mat<2, 2, uint, lowp> lowp_umat2x2;
/// Low-precision unsigned integer 2x3 matrix.
/// @see gtc_matrix_integer
typedef mat<2, 3, uint, lowp> lowp_umat2x3;
/// Low-precision unsigned integer 2x4 matrix.
/// @see gtc_matrix_integer
typedef mat<2, 4, uint, lowp> lowp_umat2x4;
/// Low-precision unsigned integer 3x2 matrix.
/// @see gtc_matrix_integer
typedef mat<3, 2, uint, lowp> lowp_umat3x2;
/// Low-precision unsigned integer 3x3 matrix.
/// @see gtc_matrix_integer
typedef mat<3, 3, uint, lowp> lowp_umat3x3;
/// Low-precision unsigned integer 3x4 matrix.
/// @see gtc_matrix_integer
typedef mat<3, 4, uint, lowp> lowp_umat3x4;
/// Low-precision unsigned integer 4x2 matrix.
/// @see gtc_matrix_integer
typedef mat<4, 2, uint, lowp> lowp_umat4x2;
/// Low-precision unsigned integer 4x3 matrix.
/// @see gtc_matrix_integer
typedef mat<4, 3, uint, lowp> lowp_umat4x3;
/// Low-precision unsigned integer 4x4 matrix.
/// @see gtc_matrix_integer
typedef mat<4, 4, uint, lowp> lowp_umat4x4;
#if(defined(GLM_PRECISION_HIGHP_INT))
typedef highp_imat2 imat2;
typedef highp_imat3 imat3;
typedef highp_imat4 imat4;
typedef highp_imat2x2 imat2x2;
typedef highp_imat2x3 imat2x3;
typedef highp_imat2x4 imat2x4;
typedef highp_imat3x2 imat3x2;
typedef highp_imat3x3 imat3x3;
typedef highp_imat3x4 imat3x4;
typedef highp_imat4x2 imat4x2;
typedef highp_imat4x3 imat4x3;
typedef highp_imat4x4 imat4x4;
#elif(defined(GLM_PRECISION_LOWP_INT))
typedef lowp_imat2 imat2;
typedef lowp_imat3 imat3;
typedef lowp_imat4 imat4;
typedef lowp_imat2x2 imat2x2;
typedef lowp_imat2x3 imat2x3;
typedef lowp_imat2x4 imat2x4;
typedef lowp_imat3x2 imat3x2;
typedef lowp_imat3x3 imat3x3;
typedef lowp_imat3x4 imat3x4;
typedef lowp_imat4x2 imat4x2;
typedef lowp_imat4x3 imat4x3;
typedef lowp_imat4x4 imat4x4;
#else //if(defined(GLM_PRECISION_MEDIUMP_INT))
/// Signed integer 2x2 matrix.
/// @see gtc_matrix_integer
typedef mediump_imat2 imat2;
/// Signed integer 3x3 matrix.
/// @see gtc_matrix_integer
typedef mediump_imat3 imat3;
/// Signed integer 4x4 matrix.
/// @see gtc_matrix_integer
typedef mediump_imat4 imat4;
/// Signed integer 2x2 matrix.
/// @see gtc_matrix_integer
typedef mediump_imat2x2 imat2x2;
/// Signed integer 2x3 matrix.
/// @see gtc_matrix_integer
typedef mediump_imat2x3 imat2x3;
/// Signed integer 2x4 matrix.
/// @see gtc_matrix_integer
typedef mediump_imat2x4 imat2x4;
/// Signed integer 3x2 matrix.
/// @see gtc_matrix_integer
typedef mediump_imat3x2 imat3x2;
/// Signed integer 3x3 matrix.
/// @see gtc_matrix_integer
typedef mediump_imat3x3 imat3x3;
/// Signed integer 3x4 matrix.
/// @see gtc_matrix_integer
typedef mediump_imat3x4 imat3x4;
/// Signed integer 4x2 matrix.
/// @see gtc_matrix_integer
typedef mediump_imat4x2 imat4x2;
/// Signed integer 4x3 matrix.
/// @see gtc_matrix_integer
typedef mediump_imat4x3 imat4x3;
/// Signed integer 4x4 matrix.
/// @see gtc_matrix_integer
typedef mediump_imat4x4 imat4x4;
#endif//GLM_PRECISION
#if(defined(GLM_PRECISION_HIGHP_UINT))
typedef highp_umat2 umat2;
typedef highp_umat3 umat3;
typedef highp_umat4 umat4;
typedef highp_umat2x2 umat2x2;
typedef highp_umat2x3 umat2x3;
typedef highp_umat2x4 umat2x4;
typedef highp_umat3x2 umat3x2;
typedef highp_umat3x3 umat3x3;
typedef highp_umat3x4 umat3x4;
typedef highp_umat4x2 umat4x2;
typedef highp_umat4x3 umat4x3;
typedef highp_umat4x4 umat4x4;
#elif(defined(GLM_PRECISION_LOWP_UINT))
typedef lowp_umat2 umat2;
typedef lowp_umat3 umat3;
typedef lowp_umat4 umat4;
typedef lowp_umat2x2 umat2x2;
typedef lowp_umat2x3 umat2x3;
typedef lowp_umat2x4 umat2x4;
typedef lowp_umat3x2 umat3x2;
typedef lowp_umat3x3 umat3x3;
typedef lowp_umat3x4 umat3x4;
typedef lowp_umat4x2 umat4x2;
typedef lowp_umat4x3 umat4x3;
typedef lowp_umat4x4 umat4x4;
#else //if(defined(GLM_PRECISION_MEDIUMP_UINT))
/// Unsigned integer 2x2 matrix.
/// @see gtc_matrix_integer
typedef mediump_umat2 umat2;
/// Unsigned integer 3x3 matrix.
/// @see gtc_matrix_integer
typedef mediump_umat3 umat3;
/// Unsigned integer 4x4 matrix.
/// @see gtc_matrix_integer
typedef mediump_umat4 umat4;
/// Unsigned integer 2x2 matrix.
/// @see gtc_matrix_integer
typedef mediump_umat2x2 umat2x2;
/// Unsigned integer 2x3 matrix.
/// @see gtc_matrix_integer
typedef mediump_umat2x3 umat2x3;
/// Unsigned integer 2x4 matrix.
/// @see gtc_matrix_integer
typedef mediump_umat2x4 umat2x4;
/// Unsigned integer 3x2 matrix.
/// @see gtc_matrix_integer
typedef mediump_umat3x2 umat3x2;
/// Unsigned integer 3x3 matrix.
/// @see gtc_matrix_integer
typedef mediump_umat3x3 umat3x3;
/// Unsigned integer 3x4 matrix.
/// @see gtc_matrix_integer
typedef mediump_umat3x4 umat3x4;
/// Unsigned integer 4x2 matrix.
/// @see gtc_matrix_integer
typedef mediump_umat4x2 umat4x2;
/// Unsigned integer 4x3 matrix.
/// @see gtc_matrix_integer
typedef mediump_umat4x3 umat4x3;
/// Unsigned integer 4x4 matrix.
/// @see gtc_matrix_integer
typedef mediump_umat4x4 umat4x4;
#endif//GLM_PRECISION
/// @}
}//namespace glm

View file

@ -0,0 +1,49 @@
/// @ref gtc_matrix_inverse
/// @file glm/gtc/matrix_inverse.hpp
///
/// @see core (dependence)
///
/// @defgroup gtc_matrix_inverse GLM_GTC_matrix_inverse
/// @ingroup gtc
///
/// Defines additional matrix inverting functions.
/// <glm/gtc/matrix_inverse.hpp> need to be included to use these functionalities.
#pragma once
// Dependencies
#include "../detail/setup.hpp"
#include "../matrix.hpp"
#include "../mat2x2.hpp"
#include "../mat3x3.hpp"
#include "../mat4x4.hpp"
#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
# pragma message("GLM: GLM_GTC_matrix_inverse extension included")
#endif
namespace glm
{
/// @addtogroup gtc_matrix_inverse
/// @{
/// Fast matrix inverse for affine matrix.
///
/// @param m Input matrix to invert.
/// @tparam genType Squared floating-point matrix: half, float or double. Inverse of matrix based of half-precision floating point value is highly innacurate.
/// @see gtc_matrix_inverse
template<typename genType>
GLM_FUNC_DECL genType affineInverse(genType const & m);
/// Compute the inverse transpose of a matrix.
///
/// @param m Input matrix to invert transpose.
/// @tparam genType Squared floating-point matrix: half, float or double. Inverse of matrix based of half-precision floating point value is highly innacurate.
/// @see gtc_matrix_inverse
template<typename genType>
GLM_FUNC_DECL genType inverseTranspose(genType const & m);
/// @}
}//namespace glm
#include "matrix_inverse.inl"

120
glm/gtc/matrix_inverse.inl Normal file
View file

@ -0,0 +1,120 @@
/// @ref gtc_matrix_inverse
/// @file glm/gtc/matrix_inverse.inl
namespace glm
{
template<typename T, precision P>
GLM_FUNC_QUALIFIER mat<3, 3, T, P> affineInverse(mat<3, 3, T, P> const & m)
{
mat<2, 2, T, P> const Inv(inverse(mat<2, 2, T, P>(m)));
return mat<3, 3, T, P>(
vec<3, T, P>(Inv[0], static_cast<T>(0)),
vec<3, T, P>(Inv[1], static_cast<T>(0)),
vec<3, T, P>(-Inv * vec<2, T, P>(m[2]), static_cast<T>(1)));
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER mat<4, 4, T, P> affineInverse(mat<4, 4, T, P> const & m)
{
mat<3, 3, T, P> const Inv(inverse(mat<3, 3, T, P>(m)));
return mat<4, 4, T, P>(
vec<4, T, P>(Inv[0], static_cast<T>(0)),
vec<4, T, P>(Inv[1], static_cast<T>(0)),
vec<4, T, P>(Inv[2], static_cast<T>(0)),
vec<4, T, P>(-Inv * vec<3, T, P>(m[3]), static_cast<T>(1)));
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER mat<2, 2, T, P> inverseTranspose(mat<2, 2, T, P> const & m)
{
T Determinant = m[0][0] * m[1][1] - m[1][0] * m[0][1];
mat<2, 2, T, P> Inverse(
+ m[1][1] / Determinant,
- m[0][1] / Determinant,
- m[1][0] / Determinant,
+ m[0][0] / Determinant);
return Inverse;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER mat<3, 3, T, P> inverseTranspose(mat<3, 3, T, P> const & m)
{
T Determinant =
+ m[0][0] * (m[1][1] * m[2][2] - m[1][2] * m[2][1])
- m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0])
+ m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]);
mat<3, 3, T, P> Inverse(uninitialize);
Inverse[0][0] = + (m[1][1] * m[2][2] - m[2][1] * m[1][2]);
Inverse[0][1] = - (m[1][0] * m[2][2] - m[2][0] * m[1][2]);
Inverse[0][2] = + (m[1][0] * m[2][1] - m[2][0] * m[1][1]);
Inverse[1][0] = - (m[0][1] * m[2][2] - m[2][1] * m[0][2]);
Inverse[1][1] = + (m[0][0] * m[2][2] - m[2][0] * m[0][2]);
Inverse[1][2] = - (m[0][0] * m[2][1] - m[2][0] * m[0][1]);
Inverse[2][0] = + (m[0][1] * m[1][2] - m[1][1] * m[0][2]);
Inverse[2][1] = - (m[0][0] * m[1][2] - m[1][0] * m[0][2]);
Inverse[2][2] = + (m[0][0] * m[1][1] - m[1][0] * m[0][1]);
Inverse /= Determinant;
return Inverse;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER mat<4, 4, T, P> inverseTranspose(mat<4, 4, T, P> const & m)
{
T SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
T SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
T SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
T SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
T SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
T SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
T SubFactor06 = m[1][2] * m[3][3] - m[3][2] * m[1][3];
T SubFactor07 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
T SubFactor08 = m[1][1] * m[3][2] - m[3][1] * m[1][2];
T SubFactor09 = m[1][0] * m[3][3] - m[3][0] * m[1][3];
T SubFactor10 = m[1][0] * m[3][2] - m[3][0] * m[1][2];
T SubFactor11 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
T SubFactor12 = m[1][0] * m[3][1] - m[3][0] * m[1][1];
T SubFactor13 = m[1][2] * m[2][3] - m[2][2] * m[1][3];
T SubFactor14 = m[1][1] * m[2][3] - m[2][1] * m[1][3];
T SubFactor15 = m[1][1] * m[2][2] - m[2][1] * m[1][2];
T SubFactor16 = m[1][0] * m[2][3] - m[2][0] * m[1][3];
T SubFactor17 = m[1][0] * m[2][2] - m[2][0] * m[1][2];
T SubFactor18 = m[1][0] * m[2][1] - m[2][0] * m[1][1];
mat<4, 4, T, P> Inverse(uninitialize);
Inverse[0][0] = + (m[1][1] * SubFactor00 - m[1][2] * SubFactor01 + m[1][3] * SubFactor02);
Inverse[0][1] = - (m[1][0] * SubFactor00 - m[1][2] * SubFactor03 + m[1][3] * SubFactor04);
Inverse[0][2] = + (m[1][0] * SubFactor01 - m[1][1] * SubFactor03 + m[1][3] * SubFactor05);
Inverse[0][3] = - (m[1][0] * SubFactor02 - m[1][1] * SubFactor04 + m[1][2] * SubFactor05);
Inverse[1][0] = - (m[0][1] * SubFactor00 - m[0][2] * SubFactor01 + m[0][3] * SubFactor02);
Inverse[1][1] = + (m[0][0] * SubFactor00 - m[0][2] * SubFactor03 + m[0][3] * SubFactor04);
Inverse[1][2] = - (m[0][0] * SubFactor01 - m[0][1] * SubFactor03 + m[0][3] * SubFactor05);
Inverse[1][3] = + (m[0][0] * SubFactor02 - m[0][1] * SubFactor04 + m[0][2] * SubFactor05);
Inverse[2][0] = + (m[0][1] * SubFactor06 - m[0][2] * SubFactor07 + m[0][3] * SubFactor08);
Inverse[2][1] = - (m[0][0] * SubFactor06 - m[0][2] * SubFactor09 + m[0][3] * SubFactor10);
Inverse[2][2] = + (m[0][0] * SubFactor11 - m[0][1] * SubFactor09 + m[0][3] * SubFactor12);
Inverse[2][3] = - (m[0][0] * SubFactor08 - m[0][1] * SubFactor10 + m[0][2] * SubFactor12);
Inverse[3][0] = - (m[0][1] * SubFactor13 - m[0][2] * SubFactor14 + m[0][3] * SubFactor15);
Inverse[3][1] = + (m[0][0] * SubFactor13 - m[0][2] * SubFactor16 + m[0][3] * SubFactor17);
Inverse[3][2] = - (m[0][0] * SubFactor14 - m[0][1] * SubFactor16 + m[0][3] * SubFactor18);
Inverse[3][3] = + (m[0][0] * SubFactor15 - m[0][1] * SubFactor17 + m[0][2] * SubFactor18);
T Determinant =
+ m[0][0] * Inverse[0][0]
+ m[0][1] * Inverse[0][1]
+ m[0][2] * Inverse[0][2]
+ m[0][3] * Inverse[0][3];
Inverse /= Determinant;
return Inverse;
}
}//namespace glm

View file

@ -0,0 +1,465 @@
/// @ref gtc_matrix_transform
/// @file glm/gtc/matrix_transform.hpp
///
/// @see core (dependence)
/// @see gtx_transform
/// @see gtx_transform2
///
/// @defgroup gtc_matrix_transform GLM_GTC_matrix_transform
/// @ingroup gtc
///
/// @brief Defines functions that generate common transformation matrices.
///
/// The matrices generated by this extension use standard OpenGL fixed-function
/// conventions. For example, the lookAt function generates a transform from world
/// space into the specific eye space that the projective matrix functions
/// (perspective, ortho, etc) are designed to expect. The OpenGL compatibility
/// specifications defines the particular layout of this eye space.
///
/// <glm/gtc/matrix_transform.hpp> need to be included to use these functionalities.
#pragma once
// Dependencies
#include "../mat4x4.hpp"
#include "../vec2.hpp"
#include "../vec3.hpp"
#include "../vec4.hpp"
#include "../gtc/constants.hpp"
#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
# pragma message("GLM: GLM_GTC_matrix_transform extension included")
#endif
namespace glm
{
/// @addtogroup gtc_matrix_transform
/// @{
/// Builds a translation 4 * 4 matrix created from a vector of 3 components.
///
/// @param m Input matrix multiplied by this translation matrix.
/// @param v Coordinates of a translation vector.
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @code
/// #include <glm/glm.hpp>
/// #include <glm/gtc/matrix_transform.hpp>
/// ...
/// glm::mat4 m = glm::translate(glm::mat4(1.0f), glm::vec3(1.0f));
/// // m[0][0] == 1.0f, m[0][1] == 0.0f, m[0][2] == 0.0f, m[0][3] == 0.0f
/// // m[1][0] == 0.0f, m[1][1] == 1.0f, m[1][2] == 0.0f, m[1][3] == 0.0f
/// // m[2][0] == 0.0f, m[2][1] == 0.0f, m[2][2] == 1.0f, m[2][3] == 0.0f
/// // m[3][0] == 1.0f, m[3][1] == 1.0f, m[3][2] == 1.0f, m[3][3] == 1.0f
/// @endcode
/// @see gtc_matrix_transform
/// @see - translate(mat<4, 4, T, P> const & m, T x, T y, T z)
/// @see - translate(vec<3, T, P> const & v)
template<typename T, precision P>
GLM_FUNC_DECL mat<4, 4, T, P> translate(
mat<4, 4, T, P> const& m,
vec<3, T, P> const & v);
/// Builds a rotation 4 * 4 matrix created from an axis vector and an angle.
///
/// @param m Input matrix multiplied by this rotation matrix.
/// @param angle Rotation angle expressed in radians.
/// @param axis Rotation axis, recommended to be normalized.
/// @tparam T Value type used to build the matrix. Supported: half, float or double.
/// @see gtc_matrix_transform
/// @see - rotate(mat<4, 4, T, P> const & m, T angle, T x, T y, T z)
/// @see - rotate(T angle, vec<3, T, P> const & v)
template<typename T, precision P>
GLM_FUNC_DECL mat<4, 4, T, P> rotate(
mat<4, 4, T, P> const& m,
T angle,
vec<3, T, P> const & axis);
/// Builds a scale 4 * 4 matrix created from 3 scalars.
///
/// @param m Input matrix multiplied by this scale matrix.
/// @param v Ratio of scaling for each axis.
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
/// @see gtc_matrix_transform
/// @see - scale(mat<4, 4, T, P> const & m, T x, T y, T z)
/// @see - scale(vec<3, T, P> const & v)
template<typename T, precision P>
GLM_FUNC_DECL mat<4, 4, T, P> scale(
mat<4, 4, T, P> const& m,
vec<3, T, P> const & v);
/// Creates a matrix for an orthographic parallel viewing volume, using the default handedness.
///
/// @param left
/// @param right
/// @param bottom
/// @param top
/// @param zNear
/// @param zFar
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
/// @see - glm::ortho(T const & left, T const & right, T const & bottom, T const & top)
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> ortho(
T left,
T right,
T bottom,
T top,
T zNear,
T zFar);
/// Creates a matrix for an orthographic parallel viewing volume, using left-handedness.
///
/// @param left
/// @param right
/// @param bottom
/// @param top
/// @param zNear
/// @param zFar
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
/// @see - glm::ortho(T const & left, T const & right, T const & bottom, T const & top)
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoLH(
T left,
T right,
T bottom,
T top,
T zNear,
T zFar);
/// Creates a matrix for an orthographic parallel viewing volume, using right-handedness.
///
/// @param left
/// @param right
/// @param bottom
/// @param top
/// @param zNear
/// @param zFar
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
/// @see - glm::ortho(T const & left, T const & right, T const & bottom, T const & top)
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoRH(
T left,
T right,
T bottom,
T top,
T zNear,
T zFar);
/// Creates a matrix for projecting two-dimensional coordinates onto the screen.
///
/// @param left
/// @param right
/// @param bottom
/// @param top
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
/// @see - glm::ortho(T const & left, T const & right, T const & bottom, T const & top, T const & zNear, T const & zFar)
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> ortho(
T left,
T right,
T bottom,
T top);
/// Creates a frustum matrix with default handedness.
///
/// @param left
/// @param right
/// @param bottom
/// @param top
/// @param near
/// @param far
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> frustum(
T left,
T right,
T bottom,
T top,
T near,
T far);
/// Creates a left handed frustum matrix.
///
/// @param left
/// @param right
/// @param bottom
/// @param top
/// @param near
/// @param far
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumLH(
T left,
T right,
T bottom,
T top,
T near,
T far);
/// Creates a right handed frustum matrix.
///
/// @param left
/// @param right
/// @param bottom
/// @param top
/// @param near
/// @param far
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumRH(
T left,
T right,
T bottom,
T top,
T near,
T far);
/// Creates a matrix for a symetric perspective-view frustum based on the default handedness.
///
/// @param fovy Specifies the field of view angle in the y direction. Expressed in radians.
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspective(
T fovy,
T aspect,
T near,
T far);
/// Creates a matrix for a right handed, symetric perspective-view frustum.
///
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveRH(
T fovy,
T aspect,
T near,
T far);
/// Creates a matrix for a left handed, symetric perspective-view frustum.
///
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveLH(
T fovy,
T aspect,
T near,
T far);
/// Builds a perspective projection matrix based on a field of view and the default handedness.
///
/// @param fov Expressed in radians.
/// @param width
/// @param height
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFov(
T fov,
T width,
T height,
T near,
T far);
/// Builds a right handed perspective projection matrix based on a field of view.
///
/// @param fov Expressed in radians.
/// @param width
/// @param height
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovRH(
T fov,
T width,
T height,
T near,
T far);
/// Builds a left handed perspective projection matrix based on a field of view.
///
/// @param fov Expressed in radians.
/// @param width
/// @param height
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovLH(
T fov,
T width,
T height,
T near,
T far);
/// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite with default handedness.
///
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> infinitePerspective(
T fovy, T aspect, T near);
/// Creates a matrix for a left handed, symmetric perspective-view frustum with far plane at infinite.
///
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> infinitePerspectiveLH(
T fovy, T aspect, T near);
/// Creates a matrix for a right handed, symmetric perspective-view frustum with far plane at infinite.
///
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> infinitePerspectiveRH(
T fovy, T aspect, T near);
/// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite for graphics hardware that doesn't support depth clamping.
///
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> tweakedInfinitePerspective(
T fovy, T aspect, T near);
/// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite for graphics hardware that doesn't support depth clamping.
///
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @param ep
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> tweakedInfinitePerspective(
T fovy, T aspect, T near, T ep);
/// Map the specified object coordinates (obj.x, obj.y, obj.z) into window coordinates.
///
/// @param obj Specify the object coordinates.
/// @param model Specifies the current modelview matrix
/// @param proj Specifies the current projection matrix
/// @param viewport Specifies the current viewport
/// @return Return the computed window coordinates.
/// @tparam T Native type used for the computation. Currently supported: half (not recommanded), float or double.
/// @tparam U Currently supported: Floating-point types and integer types.
/// @see gtc_matrix_transform
template<typename T, typename U, precision P>
GLM_FUNC_DECL vec<3, T, P> project(
vec<3, T, P> const & obj,
mat<4, 4, T, P> const& model,
mat<4, 4, T, P> const& proj,
vec<4, U, P> const & viewport);
/// Map the specified window coordinates (win.x, win.y, win.z) into object coordinates.
///
/// @param win Specify the window coordinates to be mapped.
/// @param model Specifies the modelview matrix
/// @param proj Specifies the projection matrix
/// @param viewport Specifies the viewport
/// @return Returns the computed object coordinates.
/// @tparam T Native type used for the computation. Currently supported: half (not recommanded), float or double.
/// @tparam U Currently supported: Floating-point types and integer types.
/// @see gtc_matrix_transform
template<typename T, typename U, precision P>
GLM_FUNC_DECL vec<3, T, P> unProject(
vec<3, T, P> const & win,
mat<4, 4, T, P> const& model,
mat<4, 4, T, P> const& proj,
vec<4, U, P> const & viewport);
/// Define a picking region
///
/// @param center
/// @param delta
/// @param viewport
/// @tparam T Native type used for the computation. Currently supported: half (not recommanded), float or double.
/// @tparam U Currently supported: Floating-point types and integer types.
/// @see gtc_matrix_transform
template<typename T, precision P, typename U>
GLM_FUNC_DECL mat<4, 4, T, P> pickMatrix(
vec<2, T, P> const & center,
vec<2, T, P> const & delta,
vec<4, U, P> const & viewport);
/// Build a look at view matrix based on the default handedness.
///
/// @param eye Position of the camera
/// @param center Position where the camera is looking at
/// @param up Normalized up vector, how the camera is oriented. Typically (0, 0, 1)
/// @see gtc_matrix_transform
/// @see - frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal)
template<typename T, precision P>
GLM_FUNC_DECL mat<4, 4, T, P> lookAt(
vec<3, T, P> const & eye,
vec<3, T, P> const & center,
vec<3, T, P> const & up);
/// Build a right handed look at view matrix.
///
/// @param eye Position of the camera
/// @param center Position where the camera is looking at
/// @param up Normalized up vector, how the camera is oriented. Typically (0, 0, 1)
/// @see gtc_matrix_transform
/// @see - frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal)
template<typename T, precision P>
GLM_FUNC_DECL mat<4, 4, T, P> lookAtRH(
vec<3, T, P> const & eye,
vec<3, T, P> const & center,
vec<3, T, P> const & up);
/// Build a left handed look at view matrix.
///
/// @param eye Position of the camera
/// @param center Position where the camera is looking at
/// @param up Normalized up vector, how the camera is oriented. Typically (0, 0, 1)
/// @see gtc_matrix_transform
/// @see - frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal)
template<typename T, precision P>
GLM_FUNC_DECL mat<4, 4, T, P> lookAtLH(
vec<3, T, P> const & eye,
vec<3, T, P> const & center,
vec<3, T, P> const & up);
/// @}
}//namespace glm
#include "matrix_transform.inl"

View file

@ -0,0 +1,575 @@
/// @ref gtc_matrix_transform
/// @file glm/gtc/matrix_transform.inl
#include "../geometric.hpp"
#include "../trigonometric.hpp"
#include "../matrix.hpp"
namespace glm
{
template<typename T, precision P>
GLM_FUNC_QUALIFIER mat<4, 4, T, P> translate(mat<4, 4, T, P> const & m, vec<3, T, P> const & v)
{
mat<4, 4, T, P> Result(m);
Result[3] = m[0] * v[0] + m[1] * v[1] + m[2] * v[2] + m[3];
return Result;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER mat<4, 4, T, P> rotate(mat<4, 4, T, P> const & m, T angle, vec<3, T, P> const & v)
{
T const a = angle;
T const c = cos(a);
T const s = sin(a);
vec<3, T, P> axis(normalize(v));
vec<3, T, P> temp((T(1) - c) * axis);
mat<4, 4, T, P> Rotate(uninitialize);
Rotate[0][0] = c + temp[0] * axis[0];
Rotate[0][1] = temp[0] * axis[1] + s * axis[2];
Rotate[0][2] = temp[0] * axis[2] - s * axis[1];
Rotate[1][0] = temp[1] * axis[0] - s * axis[2];
Rotate[1][1] = c + temp[1] * axis[1];
Rotate[1][2] = temp[1] * axis[2] + s * axis[0];
Rotate[2][0] = temp[2] * axis[0] + s * axis[1];
Rotate[2][1] = temp[2] * axis[1] - s * axis[0];
Rotate[2][2] = c + temp[2] * axis[2];
mat<4, 4, T, P> Result(uninitialize);
Result[0] = m[0] * Rotate[0][0] + m[1] * Rotate[0][1] + m[2] * Rotate[0][2];
Result[1] = m[0] * Rotate[1][0] + m[1] * Rotate[1][1] + m[2] * Rotate[1][2];
Result[2] = m[0] * Rotate[2][0] + m[1] * Rotate[2][1] + m[2] * Rotate[2][2];
Result[3] = m[3];
return Result;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER mat<4, 4, T, P> rotate_slow(mat<4, 4, T, P> const & m, T angle, vec<3, T, P> const & v)
{
T const a = angle;
T const c = cos(a);
T const s = sin(a);
mat<4, 4, T, P> Result;
vec<3, T, P> axis = normalize(v);
Result[0][0] = c + (static_cast<T>(1) - c) * axis.x * axis.x;
Result[0][1] = (static_cast<T>(1) - c) * axis.x * axis.y + s * axis.z;
Result[0][2] = (static_cast<T>(1) - c) * axis.x * axis.z - s * axis.y;
Result[0][3] = static_cast<T>(0);
Result[1][0] = (static_cast<T>(1) - c) * axis.y * axis.x - s * axis.z;
Result[1][1] = c + (static_cast<T>(1) - c) * axis.y * axis.y;
Result[1][2] = (static_cast<T>(1) - c) * axis.y * axis.z + s * axis.x;
Result[1][3] = static_cast<T>(0);
Result[2][0] = (static_cast<T>(1) - c) * axis.z * axis.x + s * axis.y;
Result[2][1] = (static_cast<T>(1) - c) * axis.z * axis.y - s * axis.x;
Result[2][2] = c + (static_cast<T>(1) - c) * axis.z * axis.z;
Result[2][3] = static_cast<T>(0);
Result[3] = vec<4, T, P>(0, 0, 0, 1);
return m * Result;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER mat<4, 4, T, P> scale(mat<4, 4, T, P> const & m, vec<3, T, P> const & v)
{
mat<4, 4, T, P> Result(uninitialize);
Result[0] = m[0] * v[0];
Result[1] = m[1] * v[1];
Result[2] = m[2] * v[2];
Result[3] = m[3];
return Result;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER mat<4, 4, T, P> scale_slow(mat<4, 4, T, P> const & m, vec<3, T, P> const & v)
{
mat<4, 4, T, P> Result(T(1));
Result[0][0] = v.x;
Result[1][1] = v.y;
Result[2][2] = v.z;
return m * Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> ortho
(
T left, T right,
T bottom, T top,
T zNear, T zFar
)
{
# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED
return orthoLH(left, right, bottom, top, zNear, zFar);
# else
return orthoRH(left, right, bottom, top, zNear, zFar);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoLH
(
T left, T right,
T bottom, T top,
T zNear, T zFar
)
{
mat<4, 4, T, defaultp> Result(1);
Result[0][0] = static_cast<T>(2) / (right - left);
Result[1][1] = static_cast<T>(2) / (top - bottom);
Result[3][0] = - (right + left) / (right - left);
Result[3][1] = - (top + bottom) / (top - bottom);
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
Result[2][2] = static_cast<T>(1) / (zFar - zNear);
Result[3][2] = - zNear / (zFar - zNear);
# else
Result[2][2] = static_cast<T>(2) / (zFar - zNear);
Result[3][2] = - (zFar + zNear) / (zFar - zNear);
# endif
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoRH
(
T left, T right,
T bottom, T top,
T zNear, T zFar
)
{
mat<4, 4, T, defaultp> Result(1);
Result[0][0] = static_cast<T>(2) / (right - left);
Result[1][1] = static_cast<T>(2) / (top - bottom);
Result[3][0] = - (right + left) / (right - left);
Result[3][1] = - (top + bottom) / (top - bottom);
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
Result[2][2] = - static_cast<T>(1) / (zFar - zNear);
Result[3][2] = - zNear / (zFar - zNear);
# else
Result[2][2] = - static_cast<T>(2) / (zFar - zNear);
Result[3][2] = - (zFar + zNear) / (zFar - zNear);
# endif
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> ortho
(
T left, T right,
T bottom, T top
)
{
mat<4, 4, T, defaultp> Result(static_cast<T>(1));
Result[0][0] = static_cast<T>(2) / (right - left);
Result[1][1] = static_cast<T>(2) / (top - bottom);
Result[2][2] = - static_cast<T>(1);
Result[3][0] = - (right + left) / (right - left);
Result[3][1] = - (top + bottom) / (top - bottom);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustum
(
T left, T right,
T bottom, T top,
T nearVal, T farVal
)
{
# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED
return frustumLH(left, right, bottom, top, nearVal, farVal);
# else
return frustumRH(left, right, bottom, top, nearVal, farVal);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumLH
(
T left, T right,
T bottom, T top,
T nearVal, T farVal
)
{
mat<4, 4, T, defaultp> Result(0);
Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left);
Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom);
Result[2][0] = (right + left) / (right - left);
Result[2][1] = (top + bottom) / (top - bottom);
Result[2][3] = static_cast<T>(1);
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
Result[2][2] = farVal / (farVal - nearVal);
Result[3][2] = -(farVal * nearVal) / (farVal - nearVal);
# else
Result[2][2] = (farVal + nearVal) / (farVal - nearVal);
Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal);
# endif
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumRH
(
T left, T right,
T bottom, T top,
T nearVal, T farVal
)
{
mat<4, 4, T, defaultp> Result(0);
Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left);
Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom);
Result[2][0] = (right + left) / (right - left);
Result[2][1] = (top + bottom) / (top - bottom);
Result[2][3] = static_cast<T>(-1);
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
Result[2][2] = farVal / (nearVal - farVal);
Result[3][2] = -(farVal * nearVal) / (farVal - nearVal);
# else
Result[2][2] = - (farVal + nearVal) / (farVal - nearVal);
Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal);
# endif
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspective(T fovy, T aspect, T zNear, T zFar)
{
# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED
return perspectiveLH(fovy, aspect, zNear, zFar);
# else
return perspectiveRH(fovy, aspect, zNear, zFar);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveRH(T fovy, T aspect, T zNear, T zFar)
{
assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0));
T const tanHalfFovy = tan(fovy / static_cast<T>(2));
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy);
Result[1][1] = static_cast<T>(1) / (tanHalfFovy);
Result[2][3] = - static_cast<T>(1);
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
Result[2][2] = zFar / (zNear - zFar);
Result[3][2] = -(zFar * zNear) / (zFar - zNear);
# else
Result[2][2] = - (zFar + zNear) / (zFar - zNear);
Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
# endif
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveLH(T fovy, T aspect, T zNear, T zFar)
{
assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0));
T const tanHalfFovy = tan(fovy / static_cast<T>(2));
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy);
Result[1][1] = static_cast<T>(1) / (tanHalfFovy);
Result[2][3] = static_cast<T>(1);
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
Result[2][2] = zFar / (zFar - zNear);
Result[3][2] = -(zFar * zNear) / (zFar - zNear);
# else
Result[2][2] = (zFar + zNear) / (zFar - zNear);
Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
# endif
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFov(T fov, T width, T height, T zNear, T zFar)
{
# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED
return perspectiveFovLH(fov, width, height, zNear, zFar);
# else
return perspectiveFovRH(fov, width, height, zNear, zFar);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovRH(T fov, T width, T height, T zNear, T zFar)
{
assert(width > static_cast<T>(0));
assert(height > static_cast<T>(0));
assert(fov > static_cast<T>(0));
T const rad = fov;
T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad);
T const w = h * height / width; ///todo max(width , Height) / min(width , Height)?
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
Result[0][0] = w;
Result[1][1] = h;
Result[2][3] = - static_cast<T>(1);
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
Result[2][2] = zFar / (zNear - zFar);
Result[3][2] = -(zFar * zNear) / (zFar - zNear);
# else
Result[2][2] = - (zFar + zNear) / (zFar - zNear);
Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
# endif
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovLH(T fov, T width, T height, T zNear, T zFar)
{
assert(width > static_cast<T>(0));
assert(height > static_cast<T>(0));
assert(fov > static_cast<T>(0));
T const rad = fov;
T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad);
T const w = h * height / width; ///todo max(width , Height) / min(width , Height)?
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
Result[0][0] = w;
Result[1][1] = h;
Result[2][3] = static_cast<T>(1);
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
Result[2][2] = zFar / (zFar - zNear);
Result[3][2] = -(zFar * zNear) / (zFar - zNear);
# else
Result[2][2] = (zFar + zNear) / (zFar - zNear);
Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
# endif
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> infinitePerspective(T fovy, T aspect, T zNear)
{
# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED
return infinitePerspectiveLH(fovy, aspect, zNear);
# else
return infinitePerspectiveRH(fovy, aspect, zNear);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> infinitePerspectiveRH(T fovy, T aspect, T zNear)
{
T const range = tan(fovy / static_cast<T>(2)) * zNear;
T const left = -range * aspect;
T const right = range * aspect;
T const bottom = -range;
T const top = range;
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
Result[0][0] = (static_cast<T>(2) * zNear) / (right - left);
Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom);
Result[2][2] = - static_cast<T>(1);
Result[2][3] = - static_cast<T>(1);
Result[3][2] = - static_cast<T>(2) * zNear;
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> infinitePerspectiveLH(T fovy, T aspect, T zNear)
{
T const range = tan(fovy / static_cast<T>(2)) * zNear;
T const left = -range * aspect;
T const right = range * aspect;
T const bottom = -range;
T const top = range;
mat<4, 4, T, defaultp> Result(T(0));
Result[0][0] = (static_cast<T>(2) * zNear) / (right - left);
Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom);
Result[2][2] = static_cast<T>(1);
Result[2][3] = static_cast<T>(1);
Result[3][2] = - static_cast<T>(2) * zNear;
return Result;
}
// Infinite projection matrix: http://www.terathon.com/gdc07_lengyel.pdf
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear, T ep)
{
T const range = tan(fovy / static_cast<T>(2)) * zNear;
T const left = -range * aspect;
T const right = range * aspect;
T const bottom = -range;
T const top = range;
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
Result[0][0] = (static_cast<T>(2) * zNear) / (right - left);
Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom);
Result[2][2] = ep - static_cast<T>(1);
Result[2][3] = static_cast<T>(-1);
Result[3][2] = (ep - static_cast<T>(2)) * zNear;
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear)
{
return tweakedInfinitePerspective(fovy, aspect, zNear, epsilon<T>());
}
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER vec<3, T, P> project
(
vec<3, T, P> const & obj,
mat<4, 4, T, P> const& model,
mat<4, 4, T, P> const& proj,
vec<4, U, P> const & viewport
)
{
vec<4, T, P> tmp = vec<4, T, P>(obj, static_cast<T>(1));
tmp = model * tmp;
tmp = proj * tmp;
tmp /= tmp.w;
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
tmp.x = tmp.x * static_cast<T>(0.5) + static_cast<T>(0.5);
tmp.y = tmp.y * static_cast<T>(0.5) + static_cast<T>(0.5);
# else
tmp = tmp * static_cast<T>(0.5) + static_cast<T>(0.5);
# endif
tmp[0] = tmp[0] * T(viewport[2]) + T(viewport[0]);
tmp[1] = tmp[1] * T(viewport[3]) + T(viewport[1]);
return vec<3, T, P>(tmp);
}
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER vec<3, T, P> unProject
(
vec<3, T, P> const & win,
mat<4, 4, T, P> const& model,
mat<4, 4, T, P> const& proj,
vec<4, U, P> const & viewport
)
{
mat<4, 4, T, P> Inverse = inverse(proj * model);
vec<4, T, P> tmp = vec<4, T, P>(win, T(1));
tmp.x = (tmp.x - T(viewport[0])) / T(viewport[2]);
tmp.y = (tmp.y - T(viewport[1])) / T(viewport[3]);
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
tmp.x = tmp.x * static_cast<T>(2) - static_cast<T>(1);
tmp.y = tmp.y * static_cast<T>(2) - static_cast<T>(1);
# else
tmp = tmp * static_cast<T>(2) - static_cast<T>(1);
# endif
vec<4, T, P> obj = Inverse * tmp;
obj /= obj.w;
return vec<3, T, P>(obj);
}
template<typename T, precision P, typename U>
GLM_FUNC_QUALIFIER mat<4, 4, T, P> pickMatrix(vec<2, T, P> const & center, vec<2, T, P> const & delta, vec<4, U, P> const & viewport)
{
assert(delta.x > static_cast<T>(0) && delta.y > static_cast<T>(0));
mat<4, 4, T, P> Result(static_cast<T>(1));
if(!(delta.x > static_cast<T>(0) && delta.y > static_cast<T>(0)))
return Result; // Error
vec<3, T, P> Temp(
(static_cast<T>(viewport[2]) - static_cast<T>(2) * (center.x - static_cast<T>(viewport[0]))) / delta.x,
(static_cast<T>(viewport[3]) - static_cast<T>(2) * (center.y - static_cast<T>(viewport[1]))) / delta.y,
static_cast<T>(0));
// Translate and scale the picked region to the entire window
Result = translate(Result, Temp);
return scale(Result, vec<3, T, P>(static_cast<T>(viewport[2]) / delta.x, static_cast<T>(viewport[3]) / delta.y, static_cast<T>(1)));
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER mat<4, 4, T, P> lookAt(vec<3, T, P> const & eye, vec<3, T, P> const & center, vec<3, T, P> const & up)
{
# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED
return lookAtLH(eye, center, up);
# else
return lookAtRH(eye, center, up);
# endif
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER mat<4, 4, T, P> lookAtRH
(
vec<3, T, P> const & eye,
vec<3, T, P> const & center,
vec<3, T, P> const & up
)
{
vec<3, T, P> const f(normalize(center - eye));
vec<3, T, P> const s(normalize(cross(f, up)));
vec<3, T, P> const u(cross(s, f));
mat<4, 4, T, P> Result(1);
Result[0][0] = s.x;
Result[1][0] = s.y;
Result[2][0] = s.z;
Result[0][1] = u.x;
Result[1][1] = u.y;
Result[2][1] = u.z;
Result[0][2] =-f.x;
Result[1][2] =-f.y;
Result[2][2] =-f.z;
Result[3][0] =-dot(s, eye);
Result[3][1] =-dot(u, eye);
Result[3][2] = dot(f, eye);
return Result;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER mat<4, 4, T, P> lookAtLH
(
vec<3, T, P> const & eye,
vec<3, T, P> const & center,
vec<3, T, P> const & up
)
{
vec<3, T, P> const f(normalize(center - eye));
vec<3, T, P> const s(normalize(cross(up, f)));
vec<3, T, P> const u(cross(f, s));
mat<4, 4, T, P> Result(1);
Result[0][0] = s.x;
Result[1][0] = s.y;
Result[2][0] = s.z;
Result[0][1] = u.x;
Result[1][1] = u.y;
Result[2][1] = u.z;
Result[0][2] = f.x;
Result[1][2] = f.y;
Result[2][2] = f.z;
Result[3][0] = -dot(s, eye);
Result[3][1] = -dot(u, eye);
Result[3][2] = -dot(f, eye);
return Result;
}
}//namespace glm

60
glm/gtc/noise.hpp Normal file
View file

@ -0,0 +1,60 @@
/// @ref gtc_noise
/// @file glm/gtc/noise.hpp
///
/// @see core (dependence)
///
/// @defgroup gtc_noise GLM_GTC_noise
/// @ingroup gtc
///
/// Defines 2D, 3D and 4D procedural noise functions
/// Based on the work of Stefan Gustavson and Ashima Arts on "webgl-noise":
/// https://github.com/ashima/webgl-noise
/// Following Stefan Gustavson's paper "Simplex noise demystified":
/// http://www.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
/// <glm/gtc/noise.hpp> need to be included to use these functionalities.
#pragma once
// Dependencies
#include "../detail/setup.hpp"
#include "../detail/precision.hpp"
#include "../detail/_noise.hpp"
#include "../geometric.hpp"
#include "../common.hpp"
#include "../vector_relational.hpp"
#include "../vec2.hpp"
#include "../vec3.hpp"
#include "../vec4.hpp"
#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
# pragma message("GLM: GLM_GTC_noise extension included")
#endif
namespace glm
{
/// @addtogroup gtc_noise
/// @{
/// Classic perlin noise.
/// @see gtc_noise
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_DECL T perlin(
vecType<L, T, P> const& p);
/// Periodic perlin noise.
/// @see gtc_noise
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_DECL T perlin(
vecType<L, T, P> const& p,
vecType<L, T, P> const& rep);
/// Simplex noise.
/// @see gtc_noise
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_DECL T simplex(
vecType<L, T, P> const& p);
/// @}
}//namespace glm
#include "noise.inl"

808
glm/gtc/noise.inl Normal file
View file

@ -0,0 +1,808 @@
/// @ref gtc_noise
/// @file glm/gtc/noise.inl
///
// Based on the work of Stefan Gustavson and Ashima Arts on "webgl-noise":
// https://github.com/ashima/webgl-noise
// Following Stefan Gustavson's paper "Simplex noise demystified":
// http://www.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
namespace glm{
namespace gtc
{
template<typename T, precision P>
GLM_FUNC_QUALIFIER vec<4, T, P> grad4(T const & j, vec<4, T, P> const & ip)
{
vec<3, T, P> pXYZ = floor(fract(vec<3, T, P>(j) * vec<3, T, P>(ip)) * T(7)) * ip[2] - T(1);
T pW = static_cast<T>(1.5) - dot(abs(pXYZ), vec<3, T, P>(1));
vec<4, T, P> s = vec<4, T, P>(lessThan(vec<4, T, P>(pXYZ, pW), vec<4, T, P>(0.0)));
pXYZ = pXYZ + (vec<3, T, P>(s) * T(2) - T(1)) * s.w;
return vec<4, T, P>(pXYZ, pW);
}
}//namespace gtc
// Classic Perlin noise
template<typename T, precision P>
GLM_FUNC_QUALIFIER T perlin(vec<2, T, P> const & Position)
{
vec<4, T, P> Pi = glm::floor(vec<4, T, P>(Position.x, Position.y, Position.x, Position.y)) + vec<4, T, P>(0.0, 0.0, 1.0, 1.0);
vec<4, T, P> Pf = glm::fract(vec<4, T, P>(Position.x, Position.y, Position.x, Position.y)) - vec<4, T, P>(0.0, 0.0, 1.0, 1.0);
Pi = mod(Pi, vec<4, T, P>(289)); // To avoid truncation effects in permutation
vec<4, T, P> ix(Pi.x, Pi.z, Pi.x, Pi.z);
vec<4, T, P> iy(Pi.y, Pi.y, Pi.w, Pi.w);
vec<4, T, P> fx(Pf.x, Pf.z, Pf.x, Pf.z);
vec<4, T, P> fy(Pf.y, Pf.y, Pf.w, Pf.w);
vec<4, T, P> i = detail::permute(detail::permute(ix) + iy);
vec<4, T, P> gx = static_cast<T>(2) * glm::fract(i / T(41)) - T(1);
vec<4, T, P> gy = glm::abs(gx) - T(0.5);
vec<4, T, P> tx = glm::floor(gx + T(0.5));
gx = gx - tx;
vec<2, T, P> g00(gx.x, gy.x);
vec<2, T, P> g10(gx.y, gy.y);
vec<2, T, P> g01(gx.z, gy.z);
vec<2, T, P> g11(gx.w, gy.w);
vec<4, T, P> norm = detail::taylorInvSqrt(vec<4, T, P>(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11)));
g00 *= norm.x;
g01 *= norm.y;
g10 *= norm.z;
g11 *= norm.w;
T n00 = dot(g00, vec<2, T, P>(fx.x, fy.x));
T n10 = dot(g10, vec<2, T, P>(fx.y, fy.y));
T n01 = dot(g01, vec<2, T, P>(fx.z, fy.z));
T n11 = dot(g11, vec<2, T, P>(fx.w, fy.w));
vec<2, T, P> fade_xy = detail::fade(vec<2, T, P>(Pf.x, Pf.y));
vec<2, T, P> n_x = mix(vec<2, T, P>(n00, n01), vec<2, T, P>(n10, n11), fade_xy.x);
T n_xy = mix(n_x.x, n_x.y, fade_xy.y);
return T(2.3) * n_xy;
}
// Classic Perlin noise
template<typename T, precision P>
GLM_FUNC_QUALIFIER T perlin(vec<3, T, P> const & Position)
{
vec<3, T, P> Pi0 = floor(Position); // Integer part for indexing
vec<3, T, P> Pi1 = Pi0 + T(1); // Integer part + 1
Pi0 = detail::mod289(Pi0);
Pi1 = detail::mod289(Pi1);
vec<3, T, P> Pf0 = fract(Position); // Fractional part for interpolation
vec<3, T, P> Pf1 = Pf0 - T(1); // Fractional part - 1.0
vec<4, T, P> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
vec<4, T, P> iy = vec<4, T, P>(vec<2, T, P>(Pi0.y), vec<2, T, P>(Pi1.y));
vec<4, T, P> iz0(Pi0.z);
vec<4, T, P> iz1(Pi1.z);
vec<4, T, P> ixy = detail::permute(detail::permute(ix) + iy);
vec<4, T, P> ixy0 = detail::permute(ixy + iz0);
vec<4, T, P> ixy1 = detail::permute(ixy + iz1);
vec<4, T, P> gx0 = ixy0 * T(1.0 / 7.0);
vec<4, T, P> gy0 = fract(floor(gx0) * T(1.0 / 7.0)) - T(0.5);
gx0 = fract(gx0);
vec<4, T, P> gz0 = vec<4, T, P>(0.5) - abs(gx0) - abs(gy0);
vec<4, T, P> sz0 = step(gz0, vec<4, T, P>(0.0));
gx0 -= sz0 * (step(T(0), gx0) - T(0.5));
gy0 -= sz0 * (step(T(0), gy0) - T(0.5));
vec<4, T, P> gx1 = ixy1 * T(1.0 / 7.0);
vec<4, T, P> gy1 = fract(floor(gx1) * T(1.0 / 7.0)) - T(0.5);
gx1 = fract(gx1);
vec<4, T, P> gz1 = vec<4, T, P>(0.5) - abs(gx1) - abs(gy1);
vec<4, T, P> sz1 = step(gz1, vec<4, T, P>(0.0));
gx1 -= sz1 * (step(T(0), gx1) - T(0.5));
gy1 -= sz1 * (step(T(0), gy1) - T(0.5));
vec<3, T, P> g000(gx0.x, gy0.x, gz0.x);
vec<3, T, P> g100(gx0.y, gy0.y, gz0.y);
vec<3, T, P> g010(gx0.z, gy0.z, gz0.z);
vec<3, T, P> g110(gx0.w, gy0.w, gz0.w);
vec<3, T, P> g001(gx1.x, gy1.x, gz1.x);
vec<3, T, P> g101(gx1.y, gy1.y, gz1.y);
vec<3, T, P> g011(gx1.z, gy1.z, gz1.z);
vec<3, T, P> g111(gx1.w, gy1.w, gz1.w);
vec<4, T, P> norm0 = detail::taylorInvSqrt(vec<4, T, P>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
g000 *= norm0.x;
g010 *= norm0.y;
g100 *= norm0.z;
g110 *= norm0.w;
vec<4, T, P> norm1 = detail::taylorInvSqrt(vec<4, T, P>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
g001 *= norm1.x;
g011 *= norm1.y;
g101 *= norm1.z;
g111 *= norm1.w;
T n000 = dot(g000, Pf0);
T n100 = dot(g100, vec<3, T, P>(Pf1.x, Pf0.y, Pf0.z));
T n010 = dot(g010, vec<3, T, P>(Pf0.x, Pf1.y, Pf0.z));
T n110 = dot(g110, vec<3, T, P>(Pf1.x, Pf1.y, Pf0.z));
T n001 = dot(g001, vec<3, T, P>(Pf0.x, Pf0.y, Pf1.z));
T n101 = dot(g101, vec<3, T, P>(Pf1.x, Pf0.y, Pf1.z));
T n011 = dot(g011, vec<3, T, P>(Pf0.x, Pf1.y, Pf1.z));
T n111 = dot(g111, Pf1);
vec<3, T, P> fade_xyz = detail::fade(Pf0);
vec<4, T, P> n_z = mix(vec<4, T, P>(n000, n100, n010, n110), vec<4, T, P>(n001, n101, n011, n111), fade_xyz.z);
vec<2, T, P> n_yz = mix(vec<2, T, P>(n_z.x, n_z.y), vec<2, T, P>(n_z.z, n_z.w), fade_xyz.y);
T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
return T(2.2) * n_xyz;
}
/*
// Classic Perlin noise
template<typename T, precision P>
GLM_FUNC_QUALIFIER T perlin(vec<3, T, P> const & P)
{
vec<3, T, P> Pi0 = floor(P); // Integer part for indexing
vec<3, T, P> Pi1 = Pi0 + T(1); // Integer part + 1
Pi0 = mod(Pi0, T(289));
Pi1 = mod(Pi1, T(289));
vec<3, T, P> Pf0 = fract(P); // Fractional part for interpolation
vec<3, T, P> Pf1 = Pf0 - T(1); // Fractional part - 1.0
vec<4, T, P> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
vec<4, T, P> iy(Pi0.y, Pi0.y, Pi1.y, Pi1.y);
vec<4, T, P> iz0(Pi0.z);
vec<4, T, P> iz1(Pi1.z);
vec<4, T, P> ixy = permute(permute(ix) + iy);
vec<4, T, P> ixy0 = permute(ixy + iz0);
vec<4, T, P> ixy1 = permute(ixy + iz1);
vec<4, T, P> gx0 = ixy0 / T(7);
vec<4, T, P> gy0 = fract(floor(gx0) / T(7)) - T(0.5);
gx0 = fract(gx0);
vec<4, T, P> gz0 = vec<4, T, P>(0.5) - abs(gx0) - abs(gy0);
vec<4, T, P> sz0 = step(gz0, vec<4, T, P>(0.0));
gx0 -= sz0 * (step(0.0, gx0) - T(0.5));
gy0 -= sz0 * (step(0.0, gy0) - T(0.5));
vec<4, T, P> gx1 = ixy1 / T(7);
vec<4, T, P> gy1 = fract(floor(gx1) / T(7)) - T(0.5);
gx1 = fract(gx1);
vec<4, T, P> gz1 = vec<4, T, P>(0.5) - abs(gx1) - abs(gy1);
vec<4, T, P> sz1 = step(gz1, vec<4, T, P>(0.0));
gx1 -= sz1 * (step(T(0), gx1) - T(0.5));
gy1 -= sz1 * (step(T(0), gy1) - T(0.5));
vec<3, T, P> g000(gx0.x, gy0.x, gz0.x);
vec<3, T, P> g100(gx0.y, gy0.y, gz0.y);
vec<3, T, P> g010(gx0.z, gy0.z, gz0.z);
vec<3, T, P> g110(gx0.w, gy0.w, gz0.w);
vec<3, T, P> g001(gx1.x, gy1.x, gz1.x);
vec<3, T, P> g101(gx1.y, gy1.y, gz1.y);
vec<3, T, P> g011(gx1.z, gy1.z, gz1.z);
vec<3, T, P> g111(gx1.w, gy1.w, gz1.w);
vec<4, T, P> norm0 = taylorInvSqrt(vec<4, T, P>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
g000 *= norm0.x;
g010 *= norm0.y;
g100 *= norm0.z;
g110 *= norm0.w;
vec<4, T, P> norm1 = taylorInvSqrt(vec<4, T, P>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
g001 *= norm1.x;
g011 *= norm1.y;
g101 *= norm1.z;
g111 *= norm1.w;
T n000 = dot(g000, Pf0);
T n100 = dot(g100, vec<3, T, P>(Pf1.x, Pf0.y, Pf0.z));
T n010 = dot(g010, vec<3, T, P>(Pf0.x, Pf1.y, Pf0.z));
T n110 = dot(g110, vec<3, T, P>(Pf1.x, Pf1.y, Pf0.z));
T n001 = dot(g001, vec<3, T, P>(Pf0.x, Pf0.y, Pf1.z));
T n101 = dot(g101, vec<3, T, P>(Pf1.x, Pf0.y, Pf1.z));
T n011 = dot(g011, vec<3, T, P>(Pf0.x, Pf1.y, Pf1.z));
T n111 = dot(g111, Pf1);
vec<3, T, P> fade_xyz = fade(Pf0);
vec<4, T, P> n_z = mix(vec<4, T, P>(n000, n100, n010, n110), vec<4, T, P>(n001, n101, n011, n111), fade_xyz.z);
vec<2, T, P> n_yz = mix(
vec<2, T, P>(n_z.x, n_z.y),
vec<2, T, P>(n_z.z, n_z.w), fade_xyz.y);
T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
return T(2.2) * n_xyz;
}
*/
// Classic Perlin noise
template<typename T, precision P>
GLM_FUNC_QUALIFIER T perlin(vec<4, T, P> const & Position)
{
vec<4, T, P> Pi0 = floor(Position); // Integer part for indexing
vec<4, T, P> Pi1 = Pi0 + T(1); // Integer part + 1
Pi0 = mod(Pi0, vec<4, T, P>(289));
Pi1 = mod(Pi1, vec<4, T, P>(289));
vec<4, T, P> Pf0 = fract(Position); // Fractional part for interpolation
vec<4, T, P> Pf1 = Pf0 - T(1); // Fractional part - 1.0
vec<4, T, P> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
vec<4, T, P> iy(Pi0.y, Pi0.y, Pi1.y, Pi1.y);
vec<4, T, P> iz0(Pi0.z);
vec<4, T, P> iz1(Pi1.z);
vec<4, T, P> iw0(Pi0.w);
vec<4, T, P> iw1(Pi1.w);
vec<4, T, P> ixy = detail::permute(detail::permute(ix) + iy);
vec<4, T, P> ixy0 = detail::permute(ixy + iz0);
vec<4, T, P> ixy1 = detail::permute(ixy + iz1);
vec<4, T, P> ixy00 = detail::permute(ixy0 + iw0);
vec<4, T, P> ixy01 = detail::permute(ixy0 + iw1);
vec<4, T, P> ixy10 = detail::permute(ixy1 + iw0);
vec<4, T, P> ixy11 = detail::permute(ixy1 + iw1);
vec<4, T, P> gx00 = ixy00 / T(7);
vec<4, T, P> gy00 = floor(gx00) / T(7);
vec<4, T, P> gz00 = floor(gy00) / T(6);
gx00 = fract(gx00) - T(0.5);
gy00 = fract(gy00) - T(0.5);
gz00 = fract(gz00) - T(0.5);
vec<4, T, P> gw00 = vec<4, T, P>(0.75) - abs(gx00) - abs(gy00) - abs(gz00);
vec<4, T, P> sw00 = step(gw00, vec<4, T, P>(0.0));
gx00 -= sw00 * (step(T(0), gx00) - T(0.5));
gy00 -= sw00 * (step(T(0), gy00) - T(0.5));
vec<4, T, P> gx01 = ixy01 / T(7);
vec<4, T, P> gy01 = floor(gx01) / T(7);
vec<4, T, P> gz01 = floor(gy01) / T(6);
gx01 = fract(gx01) - T(0.5);
gy01 = fract(gy01) - T(0.5);
gz01 = fract(gz01) - T(0.5);
vec<4, T, P> gw01 = vec<4, T, P>(0.75) - abs(gx01) - abs(gy01) - abs(gz01);
vec<4, T, P> sw01 = step(gw01, vec<4, T, P>(0.0));
gx01 -= sw01 * (step(T(0), gx01) - T(0.5));
gy01 -= sw01 * (step(T(0), gy01) - T(0.5));
vec<4, T, P> gx10 = ixy10 / T(7);
vec<4, T, P> gy10 = floor(gx10) / T(7);
vec<4, T, P> gz10 = floor(gy10) / T(6);
gx10 = fract(gx10) - T(0.5);
gy10 = fract(gy10) - T(0.5);
gz10 = fract(gz10) - T(0.5);
vec<4, T, P> gw10 = vec<4, T, P>(0.75) - abs(gx10) - abs(gy10) - abs(gz10);
vec<4, T, P> sw10 = step(gw10, vec<4, T, P>(0));
gx10 -= sw10 * (step(T(0), gx10) - T(0.5));
gy10 -= sw10 * (step(T(0), gy10) - T(0.5));
vec<4, T, P> gx11 = ixy11 / T(7);
vec<4, T, P> gy11 = floor(gx11) / T(7);
vec<4, T, P> gz11 = floor(gy11) / T(6);
gx11 = fract(gx11) - T(0.5);
gy11 = fract(gy11) - T(0.5);
gz11 = fract(gz11) - T(0.5);
vec<4, T, P> gw11 = vec<4, T, P>(0.75) - abs(gx11) - abs(gy11) - abs(gz11);
vec<4, T, P> sw11 = step(gw11, vec<4, T, P>(0.0));
gx11 -= sw11 * (step(T(0), gx11) - T(0.5));
gy11 -= sw11 * (step(T(0), gy11) - T(0.5));
vec<4, T, P> g0000(gx00.x, gy00.x, gz00.x, gw00.x);
vec<4, T, P> g1000(gx00.y, gy00.y, gz00.y, gw00.y);
vec<4, T, P> g0100(gx00.z, gy00.z, gz00.z, gw00.z);
vec<4, T, P> g1100(gx00.w, gy00.w, gz00.w, gw00.w);
vec<4, T, P> g0010(gx10.x, gy10.x, gz10.x, gw10.x);
vec<4, T, P> g1010(gx10.y, gy10.y, gz10.y, gw10.y);
vec<4, T, P> g0110(gx10.z, gy10.z, gz10.z, gw10.z);
vec<4, T, P> g1110(gx10.w, gy10.w, gz10.w, gw10.w);
vec<4, T, P> g0001(gx01.x, gy01.x, gz01.x, gw01.x);
vec<4, T, P> g1001(gx01.y, gy01.y, gz01.y, gw01.y);
vec<4, T, P> g0101(gx01.z, gy01.z, gz01.z, gw01.z);
vec<4, T, P> g1101(gx01.w, gy01.w, gz01.w, gw01.w);
vec<4, T, P> g0011(gx11.x, gy11.x, gz11.x, gw11.x);
vec<4, T, P> g1011(gx11.y, gy11.y, gz11.y, gw11.y);
vec<4, T, P> g0111(gx11.z, gy11.z, gz11.z, gw11.z);
vec<4, T, P> g1111(gx11.w, gy11.w, gz11.w, gw11.w);
vec<4, T, P> norm00 = detail::taylorInvSqrt(vec<4, T, P>(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100)));
g0000 *= norm00.x;
g0100 *= norm00.y;
g1000 *= norm00.z;
g1100 *= norm00.w;
vec<4, T, P> norm01 = detail::taylorInvSqrt(vec<4, T, P>(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101)));
g0001 *= norm01.x;
g0101 *= norm01.y;
g1001 *= norm01.z;
g1101 *= norm01.w;
vec<4, T, P> norm10 = detail::taylorInvSqrt(vec<4, T, P>(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110)));
g0010 *= norm10.x;
g0110 *= norm10.y;
g1010 *= norm10.z;
g1110 *= norm10.w;
vec<4, T, P> norm11 = detail::taylorInvSqrt(vec<4, T, P>(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111)));
g0011 *= norm11.x;
g0111 *= norm11.y;
g1011 *= norm11.z;
g1111 *= norm11.w;
T n0000 = dot(g0000, Pf0);
T n1000 = dot(g1000, vec<4, T, P>(Pf1.x, Pf0.y, Pf0.z, Pf0.w));
T n0100 = dot(g0100, vec<4, T, P>(Pf0.x, Pf1.y, Pf0.z, Pf0.w));
T n1100 = dot(g1100, vec<4, T, P>(Pf1.x, Pf1.y, Pf0.z, Pf0.w));
T n0010 = dot(g0010, vec<4, T, P>(Pf0.x, Pf0.y, Pf1.z, Pf0.w));
T n1010 = dot(g1010, vec<4, T, P>(Pf1.x, Pf0.y, Pf1.z, Pf0.w));
T n0110 = dot(g0110, vec<4, T, P>(Pf0.x, Pf1.y, Pf1.z, Pf0.w));
T n1110 = dot(g1110, vec<4, T, P>(Pf1.x, Pf1.y, Pf1.z, Pf0.w));
T n0001 = dot(g0001, vec<4, T, P>(Pf0.x, Pf0.y, Pf0.z, Pf1.w));
T n1001 = dot(g1001, vec<4, T, P>(Pf1.x, Pf0.y, Pf0.z, Pf1.w));
T n0101 = dot(g0101, vec<4, T, P>(Pf0.x, Pf1.y, Pf0.z, Pf1.w));
T n1101 = dot(g1101, vec<4, T, P>(Pf1.x, Pf1.y, Pf0.z, Pf1.w));
T n0011 = dot(g0011, vec<4, T, P>(Pf0.x, Pf0.y, Pf1.z, Pf1.w));
T n1011 = dot(g1011, vec<4, T, P>(Pf1.x, Pf0.y, Pf1.z, Pf1.w));
T n0111 = dot(g0111, vec<4, T, P>(Pf0.x, Pf1.y, Pf1.z, Pf1.w));
T n1111 = dot(g1111, Pf1);
vec<4, T, P> fade_xyzw = detail::fade(Pf0);
vec<4, T, P> n_0w = mix(vec<4, T, P>(n0000, n1000, n0100, n1100), vec<4, T, P>(n0001, n1001, n0101, n1101), fade_xyzw.w);
vec<4, T, P> n_1w = mix(vec<4, T, P>(n0010, n1010, n0110, n1110), vec<4, T, P>(n0011, n1011, n0111, n1111), fade_xyzw.w);
vec<4, T, P> n_zw = mix(n_0w, n_1w, fade_xyzw.z);
vec<2, T, P> n_yzw = mix(vec<2, T, P>(n_zw.x, n_zw.y), vec<2, T, P>(n_zw.z, n_zw.w), fade_xyzw.y);
T n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x);
return T(2.2) * n_xyzw;
}
// Classic Perlin noise, periodic variant
template<typename T, precision P>
GLM_FUNC_QUALIFIER T perlin(vec<2, T, P> const & Position, vec<2, T, P> const & rep)
{
vec<4, T, P> Pi = floor(vec<4, T, P>(Position.x, Position.y, Position.x, Position.y)) + vec<4, T, P>(0.0, 0.0, 1.0, 1.0);
vec<4, T, P> Pf = fract(vec<4, T, P>(Position.x, Position.y, Position.x, Position.y)) - vec<4, T, P>(0.0, 0.0, 1.0, 1.0);
Pi = mod(Pi, vec<4, T, P>(rep.x, rep.y, rep.x, rep.y)); // To create noise with explicit period
Pi = mod(Pi, vec<4, T, P>(289)); // To avoid truncation effects in permutation
vec<4, T, P> ix(Pi.x, Pi.z, Pi.x, Pi.z);
vec<4, T, P> iy(Pi.y, Pi.y, Pi.w, Pi.w);
vec<4, T, P> fx(Pf.x, Pf.z, Pf.x, Pf.z);
vec<4, T, P> fy(Pf.y, Pf.y, Pf.w, Pf.w);
vec<4, T, P> i = detail::permute(detail::permute(ix) + iy);
vec<4, T, P> gx = static_cast<T>(2) * fract(i / T(41)) - T(1);
vec<4, T, P> gy = abs(gx) - T(0.5);
vec<4, T, P> tx = floor(gx + T(0.5));
gx = gx - tx;
vec<2, T, P> g00(gx.x, gy.x);
vec<2, T, P> g10(gx.y, gy.y);
vec<2, T, P> g01(gx.z, gy.z);
vec<2, T, P> g11(gx.w, gy.w);
vec<4, T, P> norm = detail::taylorInvSqrt(vec<4, T, P>(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11)));
g00 *= norm.x;
g01 *= norm.y;
g10 *= norm.z;
g11 *= norm.w;
T n00 = dot(g00, vec<2, T, P>(fx.x, fy.x));
T n10 = dot(g10, vec<2, T, P>(fx.y, fy.y));
T n01 = dot(g01, vec<2, T, P>(fx.z, fy.z));
T n11 = dot(g11, vec<2, T, P>(fx.w, fy.w));
vec<2, T, P> fade_xy = detail::fade(vec<2, T, P>(Pf.x, Pf.y));
vec<2, T, P> n_x = mix(vec<2, T, P>(n00, n01), vec<2, T, P>(n10, n11), fade_xy.x);
T n_xy = mix(n_x.x, n_x.y, fade_xy.y);
return T(2.3) * n_xy;
}
// Classic Perlin noise, periodic variant
template<typename T, precision P>
GLM_FUNC_QUALIFIER T perlin(vec<3, T, P> const & Position, vec<3, T, P> const & rep)
{
vec<3, T, P> Pi0 = mod(floor(Position), rep); // Integer part, modulo period
vec<3, T, P> Pi1 = mod(Pi0 + vec<3, T, P>(T(1)), rep); // Integer part + 1, mod period
Pi0 = mod(Pi0, vec<3, T, P>(289));
Pi1 = mod(Pi1, vec<3, T, P>(289));
vec<3, T, P> Pf0 = fract(Position); // Fractional part for interpolation
vec<3, T, P> Pf1 = Pf0 - vec<3, T, P>(T(1)); // Fractional part - 1.0
vec<4, T, P> ix = vec<4, T, P>(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
vec<4, T, P> iy = vec<4, T, P>(Pi0.y, Pi0.y, Pi1.y, Pi1.y);
vec<4, T, P> iz0(Pi0.z);
vec<4, T, P> iz1(Pi1.z);
vec<4, T, P> ixy = detail::permute(detail::permute(ix) + iy);
vec<4, T, P> ixy0 = detail::permute(ixy + iz0);
vec<4, T, P> ixy1 = detail::permute(ixy + iz1);
vec<4, T, P> gx0 = ixy0 / T(7);
vec<4, T, P> gy0 = fract(floor(gx0) / T(7)) - T(0.5);
gx0 = fract(gx0);
vec<4, T, P> gz0 = vec<4, T, P>(0.5) - abs(gx0) - abs(gy0);
vec<4, T, P> sz0 = step(gz0, vec<4, T, P>(0));
gx0 -= sz0 * (step(T(0), gx0) - T(0.5));
gy0 -= sz0 * (step(T(0), gy0) - T(0.5));
vec<4, T, P> gx1 = ixy1 / T(7);
vec<4, T, P> gy1 = fract(floor(gx1) / T(7)) - T(0.5);
gx1 = fract(gx1);
vec<4, T, P> gz1 = vec<4, T, P>(0.5) - abs(gx1) - abs(gy1);
vec<4, T, P> sz1 = step(gz1, vec<4, T, P>(T(0)));
gx1 -= sz1 * (step(T(0), gx1) - T(0.5));
gy1 -= sz1 * (step(T(0), gy1) - T(0.5));
vec<3, T, P> g000 = vec<3, T, P>(gx0.x, gy0.x, gz0.x);
vec<3, T, P> g100 = vec<3, T, P>(gx0.y, gy0.y, gz0.y);
vec<3, T, P> g010 = vec<3, T, P>(gx0.z, gy0.z, gz0.z);
vec<3, T, P> g110 = vec<3, T, P>(gx0.w, gy0.w, gz0.w);
vec<3, T, P> g001 = vec<3, T, P>(gx1.x, gy1.x, gz1.x);
vec<3, T, P> g101 = vec<3, T, P>(gx1.y, gy1.y, gz1.y);
vec<3, T, P> g011 = vec<3, T, P>(gx1.z, gy1.z, gz1.z);
vec<3, T, P> g111 = vec<3, T, P>(gx1.w, gy1.w, gz1.w);
vec<4, T, P> norm0 = detail::taylorInvSqrt(vec<4, T, P>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
g000 *= norm0.x;
g010 *= norm0.y;
g100 *= norm0.z;
g110 *= norm0.w;
vec<4, T, P> norm1 = detail::taylorInvSqrt(vec<4, T, P>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
g001 *= norm1.x;
g011 *= norm1.y;
g101 *= norm1.z;
g111 *= norm1.w;
T n000 = dot(g000, Pf0);
T n100 = dot(g100, vec<3, T, P>(Pf1.x, Pf0.y, Pf0.z));
T n010 = dot(g010, vec<3, T, P>(Pf0.x, Pf1.y, Pf0.z));
T n110 = dot(g110, vec<3, T, P>(Pf1.x, Pf1.y, Pf0.z));
T n001 = dot(g001, vec<3, T, P>(Pf0.x, Pf0.y, Pf1.z));
T n101 = dot(g101, vec<3, T, P>(Pf1.x, Pf0.y, Pf1.z));
T n011 = dot(g011, vec<3, T, P>(Pf0.x, Pf1.y, Pf1.z));
T n111 = dot(g111, Pf1);
vec<3, T, P> fade_xyz = detail::fade(Pf0);
vec<4, T, P> n_z = mix(vec<4, T, P>(n000, n100, n010, n110), vec<4, T, P>(n001, n101, n011, n111), fade_xyz.z);
vec<2, T, P> n_yz = mix(vec<2, T, P>(n_z.x, n_z.y), vec<2, T, P>(n_z.z, n_z.w), fade_xyz.y);
T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
return T(2.2) * n_xyz;
}
// Classic Perlin noise, periodic version
template<typename T, precision P>
GLM_FUNC_QUALIFIER T perlin(vec<4, T, P> const & Position, vec<4, T, P> const & rep)
{
vec<4, T, P> Pi0 = mod(floor(Position), rep); // Integer part modulo rep
vec<4, T, P> Pi1 = mod(Pi0 + T(1), rep); // Integer part + 1 mod rep
vec<4, T, P> Pf0 = fract(Position); // Fractional part for interpolation
vec<4, T, P> Pf1 = Pf0 - T(1); // Fractional part - 1.0
vec<4, T, P> ix = vec<4, T, P>(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
vec<4, T, P> iy = vec<4, T, P>(Pi0.y, Pi0.y, Pi1.y, Pi1.y);
vec<4, T, P> iz0(Pi0.z);
vec<4, T, P> iz1(Pi1.z);
vec<4, T, P> iw0(Pi0.w);
vec<4, T, P> iw1(Pi1.w);
vec<4, T, P> ixy = detail::permute(detail::permute(ix) + iy);
vec<4, T, P> ixy0 = detail::permute(ixy + iz0);
vec<4, T, P> ixy1 = detail::permute(ixy + iz1);
vec<4, T, P> ixy00 = detail::permute(ixy0 + iw0);
vec<4, T, P> ixy01 = detail::permute(ixy0 + iw1);
vec<4, T, P> ixy10 = detail::permute(ixy1 + iw0);
vec<4, T, P> ixy11 = detail::permute(ixy1 + iw1);
vec<4, T, P> gx00 = ixy00 / T(7);
vec<4, T, P> gy00 = floor(gx00) / T(7);
vec<4, T, P> gz00 = floor(gy00) / T(6);
gx00 = fract(gx00) - T(0.5);
gy00 = fract(gy00) - T(0.5);
gz00 = fract(gz00) - T(0.5);
vec<4, T, P> gw00 = vec<4, T, P>(0.75) - abs(gx00) - abs(gy00) - abs(gz00);
vec<4, T, P> sw00 = step(gw00, vec<4, T, P>(0));
gx00 -= sw00 * (step(T(0), gx00) - T(0.5));
gy00 -= sw00 * (step(T(0), gy00) - T(0.5));
vec<4, T, P> gx01 = ixy01 / T(7);
vec<4, T, P> gy01 = floor(gx01) / T(7);
vec<4, T, P> gz01 = floor(gy01) / T(6);
gx01 = fract(gx01) - T(0.5);
gy01 = fract(gy01) - T(0.5);
gz01 = fract(gz01) - T(0.5);
vec<4, T, P> gw01 = vec<4, T, P>(0.75) - abs(gx01) - abs(gy01) - abs(gz01);
vec<4, T, P> sw01 = step(gw01, vec<4, T, P>(0.0));
gx01 -= sw01 * (step(T(0), gx01) - T(0.5));
gy01 -= sw01 * (step(T(0), gy01) - T(0.5));
vec<4, T, P> gx10 = ixy10 / T(7);
vec<4, T, P> gy10 = floor(gx10) / T(7);
vec<4, T, P> gz10 = floor(gy10) / T(6);
gx10 = fract(gx10) - T(0.5);
gy10 = fract(gy10) - T(0.5);
gz10 = fract(gz10) - T(0.5);
vec<4, T, P> gw10 = vec<4, T, P>(0.75) - abs(gx10) - abs(gy10) - abs(gz10);
vec<4, T, P> sw10 = step(gw10, vec<4, T, P>(0.0));
gx10 -= sw10 * (step(T(0), gx10) - T(0.5));
gy10 -= sw10 * (step(T(0), gy10) - T(0.5));
vec<4, T, P> gx11 = ixy11 / T(7);
vec<4, T, P> gy11 = floor(gx11) / T(7);
vec<4, T, P> gz11 = floor(gy11) / T(6);
gx11 = fract(gx11) - T(0.5);
gy11 = fract(gy11) - T(0.5);
gz11 = fract(gz11) - T(0.5);
vec<4, T, P> gw11 = vec<4, T, P>(0.75) - abs(gx11) - abs(gy11) - abs(gz11);
vec<4, T, P> sw11 = step(gw11, vec<4, T, P>(T(0)));
gx11 -= sw11 * (step(T(0), gx11) - T(0.5));
gy11 -= sw11 * (step(T(0), gy11) - T(0.5));
vec<4, T, P> g0000(gx00.x, gy00.x, gz00.x, gw00.x);
vec<4, T, P> g1000(gx00.y, gy00.y, gz00.y, gw00.y);
vec<4, T, P> g0100(gx00.z, gy00.z, gz00.z, gw00.z);
vec<4, T, P> g1100(gx00.w, gy00.w, gz00.w, gw00.w);
vec<4, T, P> g0010(gx10.x, gy10.x, gz10.x, gw10.x);
vec<4, T, P> g1010(gx10.y, gy10.y, gz10.y, gw10.y);
vec<4, T, P> g0110(gx10.z, gy10.z, gz10.z, gw10.z);
vec<4, T, P> g1110(gx10.w, gy10.w, gz10.w, gw10.w);
vec<4, T, P> g0001(gx01.x, gy01.x, gz01.x, gw01.x);
vec<4, T, P> g1001(gx01.y, gy01.y, gz01.y, gw01.y);
vec<4, T, P> g0101(gx01.z, gy01.z, gz01.z, gw01.z);
vec<4, T, P> g1101(gx01.w, gy01.w, gz01.w, gw01.w);
vec<4, T, P> g0011(gx11.x, gy11.x, gz11.x, gw11.x);
vec<4, T, P> g1011(gx11.y, gy11.y, gz11.y, gw11.y);
vec<4, T, P> g0111(gx11.z, gy11.z, gz11.z, gw11.z);
vec<4, T, P> g1111(gx11.w, gy11.w, gz11.w, gw11.w);
vec<4, T, P> norm00 = detail::taylorInvSqrt(vec<4, T, P>(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100)));
g0000 *= norm00.x;
g0100 *= norm00.y;
g1000 *= norm00.z;
g1100 *= norm00.w;
vec<4, T, P> norm01 = detail::taylorInvSqrt(vec<4, T, P>(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101)));
g0001 *= norm01.x;
g0101 *= norm01.y;
g1001 *= norm01.z;
g1101 *= norm01.w;
vec<4, T, P> norm10 = detail::taylorInvSqrt(vec<4, T, P>(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110)));
g0010 *= norm10.x;
g0110 *= norm10.y;
g1010 *= norm10.z;
g1110 *= norm10.w;
vec<4, T, P> norm11 = detail::taylorInvSqrt(vec<4, T, P>(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111)));
g0011 *= norm11.x;
g0111 *= norm11.y;
g1011 *= norm11.z;
g1111 *= norm11.w;
T n0000 = dot(g0000, Pf0);
T n1000 = dot(g1000, vec<4, T, P>(Pf1.x, Pf0.y, Pf0.z, Pf0.w));
T n0100 = dot(g0100, vec<4, T, P>(Pf0.x, Pf1.y, Pf0.z, Pf0.w));
T n1100 = dot(g1100, vec<4, T, P>(Pf1.x, Pf1.y, Pf0.z, Pf0.w));
T n0010 = dot(g0010, vec<4, T, P>(Pf0.x, Pf0.y, Pf1.z, Pf0.w));
T n1010 = dot(g1010, vec<4, T, P>(Pf1.x, Pf0.y, Pf1.z, Pf0.w));
T n0110 = dot(g0110, vec<4, T, P>(Pf0.x, Pf1.y, Pf1.z, Pf0.w));
T n1110 = dot(g1110, vec<4, T, P>(Pf1.x, Pf1.y, Pf1.z, Pf0.w));
T n0001 = dot(g0001, vec<4, T, P>(Pf0.x, Pf0.y, Pf0.z, Pf1.w));
T n1001 = dot(g1001, vec<4, T, P>(Pf1.x, Pf0.y, Pf0.z, Pf1.w));
T n0101 = dot(g0101, vec<4, T, P>(Pf0.x, Pf1.y, Pf0.z, Pf1.w));
T n1101 = dot(g1101, vec<4, T, P>(Pf1.x, Pf1.y, Pf0.z, Pf1.w));
T n0011 = dot(g0011, vec<4, T, P>(Pf0.x, Pf0.y, Pf1.z, Pf1.w));
T n1011 = dot(g1011, vec<4, T, P>(Pf1.x, Pf0.y, Pf1.z, Pf1.w));
T n0111 = dot(g0111, vec<4, T, P>(Pf0.x, Pf1.y, Pf1.z, Pf1.w));
T n1111 = dot(g1111, Pf1);
vec<4, T, P> fade_xyzw = detail::fade(Pf0);
vec<4, T, P> n_0w = mix(vec<4, T, P>(n0000, n1000, n0100, n1100), vec<4, T, P>(n0001, n1001, n0101, n1101), fade_xyzw.w);
vec<4, T, P> n_1w = mix(vec<4, T, P>(n0010, n1010, n0110, n1110), vec<4, T, P>(n0011, n1011, n0111, n1111), fade_xyzw.w);
vec<4, T, P> n_zw = mix(n_0w, n_1w, fade_xyzw.z);
vec<2, T, P> n_yzw = mix(vec<2, T, P>(n_zw.x, n_zw.y), vec<2, T, P>(n_zw.z, n_zw.w), fade_xyzw.y);
T n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x);
return T(2.2) * n_xyzw;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER T simplex(glm::vec<2, T, P> const & v)
{
vec<4, T, P> const C = vec<4, T, P>(
T( 0.211324865405187), // (3.0 - sqrt(3.0)) / 6.0
T( 0.366025403784439), // 0.5 * (sqrt(3.0) - 1.0)
T(-0.577350269189626), // -1.0 + 2.0 * C.x
T( 0.024390243902439)); // 1.0 / 41.0
// First corner
vec<2, T, P> i = floor(v + dot(v, vec<2, T, P>(C[1])));
vec<2, T, P> x0 = v - i + dot(i, vec<2, T, P>(C[0]));
// Other corners
//i1.x = step( x0.y, x0.x ); // x0.x > x0.y ? 1.0 : 0.0
//i1.y = 1.0 - i1.x;
vec<2, T, P> i1 = (x0.x > x0.y) ? vec<2, T, P>(1, 0) : vec<2, T, P>(0, 1);
// x0 = x0 - 0.0 + 0.0 * C.xx ;
// x1 = x0 - i1 + 1.0 * C.xx ;
// x2 = x0 - 1.0 + 2.0 * C.xx ;
vec<4, T, P> x12 = vec<4, T, P>(x0.x, x0.y, x0.x, x0.y) + vec<4, T, P>(C.x, C.x, C.z, C.z);
x12 = vec<4, T, P>(vec<2, T, P>(x12) - i1, x12.z, x12.w);
// Permutations
i = mod(i, vec<2, T, P>(289)); // Avoid truncation effects in permutation
vec<3, T, P> p = detail::permute(
detail::permute(i.y + vec<3, T, P>(T(0), i1.y, T(1)))
+ i.x + vec<3, T, P>(T(0), i1.x, T(1)));
vec<3, T, P> m = max(vec<3, T, P>(0.5) - vec<3, T, P>(
dot(x0, x0),
dot(vec<2, T, P>(x12.x, x12.y), vec<2, T, P>(x12.x, x12.y)),
dot(vec<2, T, P>(x12.z, x12.w), vec<2, T, P>(x12.z, x12.w))), vec<3, T, P>(0));
m = m * m ;
m = m * m ;
// Gradients: 41 points uniformly over a line, mapped onto a diamond.
// The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287)
vec<3, T, P> x = static_cast<T>(2) * fract(p * C.w) - T(1);
vec<3, T, P> h = abs(x) - T(0.5);
vec<3, T, P> ox = floor(x + T(0.5));
vec<3, T, P> a0 = x - ox;
// Normalise gradients implicitly by scaling m
// Inlined for speed: m *= taylorInvSqrt( a0*a0 + h*h );
m *= static_cast<T>(1.79284291400159) - T(0.85373472095314) * (a0 * a0 + h * h);
// Compute final noise value at P
vec<3, T, P> g;
g.x = a0.x * x0.x + h.x * x0.y;
//g.yz = a0.yz * x12.xz + h.yz * x12.yw;
g.y = a0.y * x12.x + h.y * x12.y;
g.z = a0.z * x12.z + h.z * x12.w;
return T(130) * dot(m, g);
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER T simplex(vec<3, T, P> const & v)
{
vec<2, T, P> const C(1.0 / 6.0, 1.0 / 3.0);
vec<4, T, P> const D(0.0, 0.5, 1.0, 2.0);
// First corner
vec<3, T, P> i(floor(v + dot(v, vec<3, T, P>(C.y))));
vec<3, T, P> x0(v - i + dot(i, vec<3, T, P>(C.x)));
// Other corners
vec<3, T, P> g(step(vec<3, T, P>(x0.y, x0.z, x0.x), x0));
vec<3, T, P> l(T(1) - g);
vec<3, T, P> i1(min(g, vec<3, T, P>(l.z, l.x, l.y)));
vec<3, T, P> i2(max(g, vec<3, T, P>(l.z, l.x, l.y)));
// x0 = x0 - 0.0 + 0.0 * C.xxx;
// x1 = x0 - i1 + 1.0 * C.xxx;
// x2 = x0 - i2 + 2.0 * C.xxx;
// x3 = x0 - 1.0 + 3.0 * C.xxx;
vec<3, T, P> x1(x0 - i1 + C.x);
vec<3, T, P> x2(x0 - i2 + C.y); // 2.0*C.x = 1/3 = C.y
vec<3, T, P> x3(x0 - D.y); // -1.0+3.0*C.x = -0.5 = -D.y
// Permutations
i = detail::mod289(i);
vec<4, T, P> p(detail::permute(detail::permute(detail::permute(
i.z + vec<4, T, P>(T(0), i1.z, i2.z, T(1))) +
i.y + vec<4, T, P>(T(0), i1.y, i2.y, T(1))) +
i.x + vec<4, T, P>(T(0), i1.x, i2.x, T(1))));
// Gradients: 7x7 points over a square, mapped onto an octahedron.
// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
T n_ = static_cast<T>(0.142857142857); // 1.0/7.0
vec<3, T, P> ns(n_ * vec<3, T, P>(D.w, D.y, D.z) - vec<3, T, P>(D.x, D.z, D.x));
vec<4, T, P> j(p - T(49) * floor(p * ns.z * ns.z)); // mod(p,7*7)
vec<4, T, P> x_(floor(j * ns.z));
vec<4, T, P> y_(floor(j - T(7) * x_)); // mod(j,N)
vec<4, T, P> x(x_ * ns.x + ns.y);
vec<4, T, P> y(y_ * ns.x + ns.y);
vec<4, T, P> h(T(1) - abs(x) - abs(y));
vec<4, T, P> b0(x.x, x.y, y.x, y.y);
vec<4, T, P> b1(x.z, x.w, y.z, y.w);
// vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0;
// vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0;
vec<4, T, P> s0(floor(b0) * T(2) + T(1));
vec<4, T, P> s1(floor(b1) * T(2) + T(1));
vec<4, T, P> sh(-step(h, vec<4, T, P>(0.0)));
vec<4, T, P> a0 = vec<4, T, P>(b0.x, b0.z, b0.y, b0.w) + vec<4, T, P>(s0.x, s0.z, s0.y, s0.w) * vec<4, T, P>(sh.x, sh.x, sh.y, sh.y);
vec<4, T, P> a1 = vec<4, T, P>(b1.x, b1.z, b1.y, b1.w) + vec<4, T, P>(s1.x, s1.z, s1.y, s1.w) * vec<4, T, P>(sh.z, sh.z, sh.w, sh.w);
vec<3, T, P> p0(a0.x, a0.y, h.x);
vec<3, T, P> p1(a0.z, a0.w, h.y);
vec<3, T, P> p2(a1.x, a1.y, h.z);
vec<3, T, P> p3(a1.z, a1.w, h.w);
// Normalise gradients
vec<4, T, P> norm = detail::taylorInvSqrt(vec<4, T, P>(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3)));
p0 *= norm.x;
p1 *= norm.y;
p2 *= norm.z;
p3 *= norm.w;
// Mix final noise value
vec<4, T, P> m = max(T(0.6) - vec<4, T, P>(dot(x0, x0), dot(x1, x1), dot(x2, x2), dot(x3, x3)), vec<4, T, P>(0));
m = m * m;
return T(42) * dot(m * m, vec<4, T, P>(dot(p0, x0), dot(p1, x1), dot(p2, x2), dot(p3, x3)));
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER T simplex(vec<4, T, P> const & v)
{
vec<4, T, P> const C(
0.138196601125011, // (5 - sqrt(5))/20 G4
0.276393202250021, // 2 * G4
0.414589803375032, // 3 * G4
-0.447213595499958); // -1 + 4 * G4
// (sqrt(5) - 1)/4 = F4, used once below
T const F4 = static_cast<T>(0.309016994374947451);
// First corner
vec<4, T, P> i = floor(v + dot(v, vec4(F4)));
vec<4, T, P> x0 = v - i + dot(i, vec4(C.x));
// Other corners
// Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI)
vec<4, T, P> i0;
vec<3, T, P> isX = step(vec<3, T, P>(x0.y, x0.z, x0.w), vec<3, T, P>(x0.x));
vec<3, T, P> isYZ = step(vec<3, T, P>(x0.z, x0.w, x0.w), vec<3, T, P>(x0.y, x0.y, x0.z));
// i0.x = dot(isX, vec3(1.0));
//i0.x = isX.x + isX.y + isX.z;
//i0.yzw = static_cast<T>(1) - isX;
i0 = vec<4, T, P>(isX.x + isX.y + isX.z, T(1) - isX);
// i0.y += dot(isYZ.xy, vec2(1.0));
i0.y += isYZ.x + isYZ.y;
//i0.zw += 1.0 - vec<2, T, P>(isYZ.x, isYZ.y);
i0.z += static_cast<T>(1) - isYZ.x;
i0.w += static_cast<T>(1) - isYZ.y;
i0.z += isYZ.z;
i0.w += static_cast<T>(1) - isYZ.z;
// i0 now contains the unique values 0,1,2,3 in each channel
vec<4, T, P> i3 = clamp(i0, T(0), T(1));
vec<4, T, P> i2 = clamp(i0 - T(1), T(0), T(1));
vec<4, T, P> i1 = clamp(i0 - T(2), T(0), T(1));
// x0 = x0 - 0.0 + 0.0 * C.xxxx
// x1 = x0 - i1 + 0.0 * C.xxxx
// x2 = x0 - i2 + 0.0 * C.xxxx
// x3 = x0 - i3 + 0.0 * C.xxxx
// x4 = x0 - 1.0 + 4.0 * C.xxxx
vec<4, T, P> x1 = x0 - i1 + C.x;
vec<4, T, P> x2 = x0 - i2 + C.y;
vec<4, T, P> x3 = x0 - i3 + C.z;
vec<4, T, P> x4 = x0 + C.w;
// Permutations
i = mod(i, vec<4, T, P>(289));
T j0 = detail::permute(detail::permute(detail::permute(detail::permute(i.w) + i.z) + i.y) + i.x);
vec<4, T, P> j1 = detail::permute(detail::permute(detail::permute(detail::permute(
i.w + vec<4, T, P>(i1.w, i2.w, i3.w, T(1))) +
i.z + vec<4, T, P>(i1.z, i2.z, i3.z, T(1))) +
i.y + vec<4, T, P>(i1.y, i2.y, i3.y, T(1))) +
i.x + vec<4, T, P>(i1.x, i2.x, i3.x, T(1)));
// Gradients: 7x7x6 points over a cube, mapped onto a 4-cross polytope
// 7*7*6 = 294, which is close to the ring size 17*17 = 289.
vec<4, T, P> ip = vec<4, T, P>(T(1) / T(294), T(1) / T(49), T(1) / T(7), T(0));
vec<4, T, P> p0 = gtc::grad4(j0, ip);
vec<4, T, P> p1 = gtc::grad4(j1.x, ip);
vec<4, T, P> p2 = gtc::grad4(j1.y, ip);
vec<4, T, P> p3 = gtc::grad4(j1.z, ip);
vec<4, T, P> p4 = gtc::grad4(j1.w, ip);
// Normalise gradients
vec<4, T, P> norm = detail::taylorInvSqrt(vec<4, T, P>(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3)));
p0 *= norm.x;
p1 *= norm.y;
p2 *= norm.z;
p3 *= norm.w;
p4 *= detail::taylorInvSqrt(dot(p4, p4));
// Mix contributions from the five corners
vec<3, T, P> m0 = max(T(0.6) - vec<3, T, P>(dot(x0, x0), dot(x1, x1), dot(x2, x2)), vec<3, T, P>(0));
vec<2, T, P> m1 = max(T(0.6) - vec<2, T, P>(dot(x3, x3), dot(x4, x4) ), vec<2, T, P>(0));
m0 = m0 * m0;
m1 = m1 * m1;
return T(49) *
(dot(m0 * m0, vec<3, T, P>(dot(p0, x0), dot(p1, x1), dot(p2, x2))) +
dot(m1 * m1, vec<2, T, P>(dot(p3, x3), dot(p4, x4))));
}
}//namespace glm

604
glm/gtc/packing.hpp Normal file
View file

@ -0,0 +1,604 @@
/// @ref gtc_packing
/// @file glm/gtc/packing.hpp
///
/// @see core (dependence)
///
/// @defgroup gtc_packing GLM_GTC_packing
/// @ingroup gtc
///
/// @brief This extension provides a set of function to convert vertors to packed
/// formats.
///
/// <glm/gtc/packing.hpp> need to be included to use these features.
#pragma once
// Dependency:
#include "type_precision.hpp"
#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
# pragma message("GLM: GLM_GTC_packing extension included")
#endif
namespace glm
{
/// @addtogroup gtc_packing
/// @{
/// First, converts the normalized floating-point value v into a 8-bit integer value.
/// Then, the results are packed into the returned 8-bit unsigned integer.
///
/// The conversion for component c of v to fixed point is done as follows:
/// packUnorm1x8: round(clamp(c, 0, +1) * 255.0)
///
/// @see gtc_packing
/// @see uint16 packUnorm2x8(vec2 const & v)
/// @see uint32 packUnorm4x8(vec4 const & v)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packUnorm4x8.xml">GLSL packUnorm4x8 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL uint8 packUnorm1x8(float v);
/// Convert a single 8-bit integer to a normalized floating-point value.
///
/// The conversion for unpacked fixed-point value f to floating point is done as follows:
/// unpackUnorm4x8: f / 255.0
///
/// @see gtc_packing
/// @see vec2 unpackUnorm2x8(uint16 p)
/// @see vec4 unpackUnorm4x8(uint32 p)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackUnorm4x8.xml">GLSL unpackUnorm4x8 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL float unpackUnorm1x8(uint8 p);
/// First, converts each component of the normalized floating-point value v into 8-bit integer values.
/// Then, the results are packed into the returned 16-bit unsigned integer.
///
/// The conversion for component c of v to fixed point is done as follows:
/// packUnorm2x8: round(clamp(c, 0, +1) * 255.0)
///
/// The first component of the vector will be written to the least significant bits of the output;
/// the last component will be written to the most significant bits.
///
/// @see gtc_packing
/// @see uint8 packUnorm1x8(float const & v)
/// @see uint32 packUnorm4x8(vec4 const & v)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packUnorm4x8.xml">GLSL packUnorm4x8 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL uint16 packUnorm2x8(vec2 const & v);
/// First, unpacks a single 16-bit unsigned integer p into a pair of 8-bit unsigned integers.
/// Then, each component is converted to a normalized floating-point value to generate the returned two-component vector.
///
/// The conversion for unpacked fixed-point value f to floating point is done as follows:
/// unpackUnorm4x8: f / 255.0
///
/// The first component of the returned vector will be extracted from the least significant bits of the input;
/// the last component will be extracted from the most significant bits.
///
/// @see gtc_packing
/// @see float unpackUnorm1x8(uint8 v)
/// @see vec4 unpackUnorm4x8(uint32 p)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackUnorm4x8.xml">GLSL unpackUnorm4x8 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL vec2 unpackUnorm2x8(uint16 p);
/// First, converts the normalized floating-point value v into 8-bit integer value.
/// Then, the results are packed into the returned 8-bit unsigned integer.
///
/// The conversion to fixed point is done as follows:
/// packSnorm1x8: round(clamp(s, -1, +1) * 127.0)
///
/// @see gtc_packing
/// @see uint16 packSnorm2x8(vec2 const & v)
/// @see uint32 packSnorm4x8(vec4 const & v)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packSnorm4x8.xml">GLSL packSnorm4x8 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL uint8 packSnorm1x8(float s);
/// First, unpacks a single 8-bit unsigned integer p into a single 8-bit signed integers.
/// Then, the value is converted to a normalized floating-point value to generate the returned scalar.
///
/// The conversion for unpacked fixed-point value f to floating point is done as follows:
/// unpackSnorm1x8: clamp(f / 127.0, -1, +1)
///
/// @see gtc_packing
/// @see vec2 unpackSnorm2x8(uint16 p)
/// @see vec4 unpackSnorm4x8(uint32 p)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackSnorm4x8.xml">GLSL unpackSnorm4x8 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL float unpackSnorm1x8(uint8 p);
/// First, converts each component of the normalized floating-point value v into 8-bit integer values.
/// Then, the results are packed into the returned 16-bit unsigned integer.
///
/// The conversion for component c of v to fixed point is done as follows:
/// packSnorm2x8: round(clamp(c, -1, +1) * 127.0)
///
/// The first component of the vector will be written to the least significant bits of the output;
/// the last component will be written to the most significant bits.
///
/// @see gtc_packing
/// @see uint8 packSnorm1x8(float const & v)
/// @see uint32 packSnorm4x8(vec4 const & v)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packSnorm4x8.xml">GLSL packSnorm4x8 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL uint16 packSnorm2x8(vec2 const & v);
/// First, unpacks a single 16-bit unsigned integer p into a pair of 8-bit signed integers.
/// Then, each component is converted to a normalized floating-point value to generate the returned two-component vector.
///
/// The conversion for unpacked fixed-point value f to floating point is done as follows:
/// unpackSnorm2x8: clamp(f / 127.0, -1, +1)
///
/// The first component of the returned vector will be extracted from the least significant bits of the input;
/// the last component will be extracted from the most significant bits.
///
/// @see gtc_packing
/// @see float unpackSnorm1x8(uint8 p)
/// @see vec4 unpackSnorm4x8(uint32 p)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackSnorm4x8.xml">GLSL unpackSnorm4x8 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL vec2 unpackSnorm2x8(uint16 p);
/// First, converts the normalized floating-point value v into a 16-bit integer value.
/// Then, the results are packed into the returned 16-bit unsigned integer.
///
/// The conversion for component c of v to fixed point is done as follows:
/// packUnorm1x16: round(clamp(c, 0, +1) * 65535.0)
///
/// @see gtc_packing
/// @see uint16 packSnorm1x16(float const & v)
/// @see uint64 packSnorm4x16(vec4 const & v)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packUnorm4x8.xml">GLSL packUnorm4x8 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL uint16 packUnorm1x16(float v);
/// First, unpacks a single 16-bit unsigned integer p into a of 16-bit unsigned integers.
/// Then, the value is converted to a normalized floating-point value to generate the returned scalar.
///
/// The conversion for unpacked fixed-point value f to floating point is done as follows:
/// unpackUnorm1x16: f / 65535.0
///
/// @see gtc_packing
/// @see vec2 unpackUnorm2x16(uint32 p)
/// @see vec4 unpackUnorm4x16(uint64 p)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackUnorm2x16.xml">GLSL unpackUnorm2x16 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL float unpackUnorm1x16(uint16 p);
/// First, converts each component of the normalized floating-point value v into 16-bit integer values.
/// Then, the results are packed into the returned 64-bit unsigned integer.
///
/// The conversion for component c of v to fixed point is done as follows:
/// packUnorm4x16: round(clamp(c, 0, +1) * 65535.0)
///
/// The first component of the vector will be written to the least significant bits of the output;
/// the last component will be written to the most significant bits.
///
/// @see gtc_packing
/// @see uint16 packUnorm1x16(float const & v)
/// @see uint32 packUnorm2x16(vec2 const & v)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packUnorm4x8.xml">GLSL packUnorm4x8 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL uint64 packUnorm4x16(vec4 const & v);
/// First, unpacks a single 64-bit unsigned integer p into four 16-bit unsigned integers.
/// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector.
///
/// The conversion for unpacked fixed-point value f to floating point is done as follows:
/// unpackUnormx4x16: f / 65535.0
///
/// The first component of the returned vector will be extracted from the least significant bits of the input;
/// the last component will be extracted from the most significant bits.
///
/// @see gtc_packing
/// @see float unpackUnorm1x16(uint16 p)
/// @see vec2 unpackUnorm2x16(uint32 p)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackUnorm2x16.xml">GLSL unpackUnorm2x16 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL vec4 unpackUnorm4x16(uint64 p);
/// First, converts the normalized floating-point value v into 16-bit integer value.
/// Then, the results are packed into the returned 16-bit unsigned integer.
///
/// The conversion to fixed point is done as follows:
/// packSnorm1x8: round(clamp(s, -1, +1) * 32767.0)
///
/// @see gtc_packing
/// @see uint32 packSnorm2x16(vec2 const & v)
/// @see uint64 packSnorm4x16(vec4 const & v)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packSnorm4x8.xml">GLSL packSnorm4x8 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL uint16 packSnorm1x16(float v);
/// First, unpacks a single 16-bit unsigned integer p into a single 16-bit signed integers.
/// Then, each component is converted to a normalized floating-point value to generate the returned scalar.
///
/// The conversion for unpacked fixed-point value f to floating point is done as follows:
/// unpackSnorm1x16: clamp(f / 32767.0, -1, +1)
///
/// @see gtc_packing
/// @see vec2 unpackSnorm2x16(uint32 p)
/// @see vec4 unpackSnorm4x16(uint64 p)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackSnorm1x16.xml">GLSL unpackSnorm4x8 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL float unpackSnorm1x16(uint16 p);
/// First, converts each component of the normalized floating-point value v into 16-bit integer values.
/// Then, the results are packed into the returned 64-bit unsigned integer.
///
/// The conversion for component c of v to fixed point is done as follows:
/// packSnorm2x8: round(clamp(c, -1, +1) * 32767.0)
///
/// The first component of the vector will be written to the least significant bits of the output;
/// the last component will be written to the most significant bits.
///
/// @see gtc_packing
/// @see uint16 packSnorm1x16(float const & v)
/// @see uint32 packSnorm2x16(vec2 const & v)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packSnorm4x8.xml">GLSL packSnorm4x8 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL uint64 packSnorm4x16(vec4 const & v);
/// First, unpacks a single 64-bit unsigned integer p into four 16-bit signed integers.
/// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector.
///
/// The conversion for unpacked fixed-point value f to floating point is done as follows:
/// unpackSnorm4x16: clamp(f / 32767.0, -1, +1)
///
/// The first component of the returned vector will be extracted from the least significant bits of the input;
/// the last component will be extracted from the most significant bits.
///
/// @see gtc_packing
/// @see float unpackSnorm1x16(uint16 p)
/// @see vec2 unpackSnorm2x16(uint32 p)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackSnorm2x16.xml">GLSL unpackSnorm4x8 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL vec4 unpackSnorm4x16(uint64 p);
/// Returns an unsigned integer obtained by converting the components of a floating-point scalar
/// to the 16-bit floating-point representation found in the OpenGL Specification,
/// and then packing this 16-bit value into a 16-bit unsigned integer.
///
/// @see gtc_packing
/// @see uint32 packHalf2x16(vec2 const & v)
/// @see uint64 packHalf4x16(vec4 const & v)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packHalf2x16.xml">GLSL packHalf2x16 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL uint16 packHalf1x16(float v);
/// Returns a floating-point scalar with components obtained by unpacking a 16-bit unsigned integer into a 16-bit value,
/// interpreted as a 16-bit floating-point number according to the OpenGL Specification,
/// and converting it to 32-bit floating-point values.
///
/// @see gtc_packing
/// @see vec2 unpackHalf2x16(uint32 const & v)
/// @see vec4 unpackHalf4x16(uint64 const & v)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackHalf2x16.xml">GLSL unpackHalf2x16 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL float unpackHalf1x16(uint16 v);
/// Returns an unsigned integer obtained by converting the components of a four-component floating-point vector
/// to the 16-bit floating-point representation found in the OpenGL Specification,
/// and then packing these four 16-bit values into a 64-bit unsigned integer.
/// The first vector component specifies the 16 least-significant bits of the result;
/// the forth component specifies the 16 most-significant bits.
///
/// @see gtc_packing
/// @see uint16 packHalf1x16(float const & v)
/// @see uint32 packHalf2x16(vec2 const & v)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packHalf2x16.xml">GLSL packHalf2x16 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL uint64 packHalf4x16(vec4 const & v);
/// Returns a four-component floating-point vector with components obtained by unpacking a 64-bit unsigned integer into four 16-bit values,
/// interpreting those values as 16-bit floating-point numbers according to the OpenGL Specification,
/// and converting them to 32-bit floating-point values.
/// The first component of the vector is obtained from the 16 least-significant bits of v;
/// the forth component is obtained from the 16 most-significant bits of v.
///
/// @see gtc_packing
/// @see float unpackHalf1x16(uint16 const & v)
/// @see vec2 unpackHalf2x16(uint32 const & v)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackHalf2x16.xml">GLSL unpackHalf2x16 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL vec4 unpackHalf4x16(uint64 p);
/// Returns an unsigned integer obtained by converting the components of a four-component signed integer vector
/// to the 10-10-10-2-bit signed integer representation found in the OpenGL Specification,
/// and then packing these four values into a 32-bit unsigned integer.
/// The first vector component specifies the 10 least-significant bits of the result;
/// the forth component specifies the 2 most-significant bits.
///
/// @see gtc_packing
/// @see uint32 packI3x10_1x2(uvec4 const & v)
/// @see uint32 packSnorm3x10_1x2(vec4 const & v)
/// @see uint32 packUnorm3x10_1x2(vec4 const & v)
/// @see ivec4 unpackI3x10_1x2(uint32 const & p)
GLM_FUNC_DECL uint32 packI3x10_1x2(ivec4 const & v);
/// Unpacks a single 32-bit unsigned integer p into three 10-bit and one 2-bit signed integers.
///
/// The first component of the returned vector will be extracted from the least significant bits of the input;
/// the last component will be extracted from the most significant bits.
///
/// @see gtc_packing
/// @see uint32 packU3x10_1x2(uvec4 const & v)
/// @see vec4 unpackSnorm3x10_1x2(uint32 const & p);
/// @see uvec4 unpackI3x10_1x2(uint32 const & p);
GLM_FUNC_DECL ivec4 unpackI3x10_1x2(uint32 p);
/// Returns an unsigned integer obtained by converting the components of a four-component unsigned integer vector
/// to the 10-10-10-2-bit unsigned integer representation found in the OpenGL Specification,
/// and then packing these four values into a 32-bit unsigned integer.
/// The first vector component specifies the 10 least-significant bits of the result;
/// the forth component specifies the 2 most-significant bits.
///
/// @see gtc_packing
/// @see uint32 packI3x10_1x2(ivec4 const & v)
/// @see uint32 packSnorm3x10_1x2(vec4 const & v)
/// @see uint32 packUnorm3x10_1x2(vec4 const & v)
/// @see ivec4 unpackU3x10_1x2(uint32 const & p)
GLM_FUNC_DECL uint32 packU3x10_1x2(uvec4 const & v);
/// Unpacks a single 32-bit unsigned integer p into three 10-bit and one 2-bit unsigned integers.
///
/// The first component of the returned vector will be extracted from the least significant bits of the input;
/// the last component will be extracted from the most significant bits.
///
/// @see gtc_packing
/// @see uint32 packU3x10_1x2(uvec4 const & v)
/// @see vec4 unpackSnorm3x10_1x2(uint32 const & p);
/// @see uvec4 unpackI3x10_1x2(uint32 const & p);
GLM_FUNC_DECL uvec4 unpackU3x10_1x2(uint32 p);
/// First, converts the first three components of the normalized floating-point value v into 10-bit signed integer values.
/// Then, converts the forth component of the normalized floating-point value v into 2-bit signed integer values.
/// Then, the results are packed into the returned 32-bit unsigned integer.
///
/// The conversion for component c of v to fixed point is done as follows:
/// packSnorm3x10_1x2(xyz): round(clamp(c, -1, +1) * 511.0)
/// packSnorm3x10_1x2(w): round(clamp(c, -1, +1) * 1.0)
///
/// The first vector component specifies the 10 least-significant bits of the result;
/// the forth component specifies the 2 most-significant bits.
///
/// @see gtc_packing
/// @see vec4 unpackSnorm3x10_1x2(uint32 const & p)
/// @see uint32 packUnorm3x10_1x2(vec4 const & v)
/// @see uint32 packU3x10_1x2(uvec4 const & v)
/// @see uint32 packI3x10_1x2(ivec4 const & v)
GLM_FUNC_DECL uint32 packSnorm3x10_1x2(vec4 const & v);
/// First, unpacks a single 32-bit unsigned integer p into four 16-bit signed integers.
/// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector.
///
/// The conversion for unpacked fixed-point value f to floating point is done as follows:
/// unpackSnorm3x10_1x2(xyz): clamp(f / 511.0, -1, +1)
/// unpackSnorm3x10_1x2(w): clamp(f / 511.0, -1, +1)
///
/// The first component of the returned vector will be extracted from the least significant bits of the input;
/// the last component will be extracted from the most significant bits.
///
/// @see gtc_packing
/// @see uint32 packSnorm3x10_1x2(vec4 const & v)
/// @see vec4 unpackUnorm3x10_1x2(uint32 const & p))
/// @see uvec4 unpackI3x10_1x2(uint32 const & p)
/// @see uvec4 unpackU3x10_1x2(uint32 const & p)
GLM_FUNC_DECL vec4 unpackSnorm3x10_1x2(uint32 p);
/// First, converts the first three components of the normalized floating-point value v into 10-bit unsigned integer values.
/// Then, converts the forth component of the normalized floating-point value v into 2-bit signed uninteger values.
/// Then, the results are packed into the returned 32-bit unsigned integer.
///
/// The conversion for component c of v to fixed point is done as follows:
/// packUnorm3x10_1x2(xyz): round(clamp(c, 0, +1) * 1023.0)
/// packUnorm3x10_1x2(w): round(clamp(c, 0, +1) * 3.0)
///
/// The first vector component specifies the 10 least-significant bits of the result;
/// the forth component specifies the 2 most-significant bits.
///
/// @see gtc_packing
/// @see vec4 unpackUnorm3x10_1x2(uint32 const & p)
/// @see uint32 packUnorm3x10_1x2(vec4 const & v)
/// @see uint32 packU3x10_1x2(uvec4 const & v)
/// @see uint32 packI3x10_1x2(ivec4 const & v)
GLM_FUNC_DECL uint32 packUnorm3x10_1x2(vec4 const & v);
/// First, unpacks a single 32-bit unsigned integer p into four 16-bit signed integers.
/// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector.
///
/// The conversion for unpacked fixed-point value f to floating point is done as follows:
/// unpackSnorm3x10_1x2(xyz): clamp(f / 1023.0, 0, +1)
/// unpackSnorm3x10_1x2(w): clamp(f / 3.0, 0, +1)
///
/// The first component of the returned vector will be extracted from the least significant bits of the input;
/// the last component will be extracted from the most significant bits.
///
/// @see gtc_packing
/// @see uint32 packSnorm3x10_1x2(vec4 const & v)
/// @see vec4 unpackInorm3x10_1x2(uint32 const & p))
/// @see uvec4 unpackI3x10_1x2(uint32 const & p)
/// @see uvec4 unpackU3x10_1x2(uint32 const & p)
GLM_FUNC_DECL vec4 unpackUnorm3x10_1x2(uint32 p);
/// First, converts the first two components of the normalized floating-point value v into 11-bit signless floating-point values.
/// Then, converts the third component of the normalized floating-point value v into a 10-bit signless floating-point value.
/// Then, the results are packed into the returned 32-bit unsigned integer.
///
/// The first vector component specifies the 11 least-significant bits of the result;
/// the last component specifies the 10 most-significant bits.
///
/// @see gtc_packing
/// @see vec3 unpackF2x11_1x10(uint32 const & p)
GLM_FUNC_DECL uint32 packF2x11_1x10(vec3 const & v);
/// First, unpacks a single 32-bit unsigned integer p into two 11-bit signless floating-point values and one 10-bit signless floating-point value .
/// Then, each component is converted to a normalized floating-point value to generate the returned three-component vector.
///
/// The first component of the returned vector will be extracted from the least significant bits of the input;
/// the last component will be extracted from the most significant bits.
///
/// @see gtc_packing
/// @see uint32 packF2x11_1x10(vec3 const & v)
GLM_FUNC_DECL vec3 unpackF2x11_1x10(uint32 p);
/// First, converts the first two components of the normalized floating-point value v into 11-bit signless floating-point values.
/// Then, converts the third component of the normalized floating-point value v into a 10-bit signless floating-point value.
/// Then, the results are packed into the returned 32-bit unsigned integer.
///
/// The first vector component specifies the 11 least-significant bits of the result;
/// the last component specifies the 10 most-significant bits.
///
/// packF3x9_E1x5 allows encoding into RGBE / RGB9E5 format
///
/// @see gtc_packing
/// @see vec3 unpackF3x9_E1x5(uint32 const & p)
GLM_FUNC_DECL uint32 packF3x9_E1x5(vec3 const & v);
/// First, unpacks a single 32-bit unsigned integer p into two 11-bit signless floating-point values and one 10-bit signless floating-point value .
/// Then, each component is converted to a normalized floating-point value to generate the returned three-component vector.
///
/// The first component of the returned vector will be extracted from the least significant bits of the input;
/// the last component will be extracted from the most significant bits.
///
/// unpackF3x9_E1x5 allows decoding RGBE / RGB9E5 data
///
/// @see gtc_packing
/// @see uint32 packF3x9_E1x5(vec3 const & v)
GLM_FUNC_DECL vec3 unpackF3x9_E1x5(uint32 p);
/// Returns an unsigned integer vector obtained by converting the components of a floating-point vector
/// to the 16-bit floating-point representation found in the OpenGL Specification.
/// The first vector component specifies the 16 least-significant bits of the result;
/// the forth component specifies the 16 most-significant bits.
///
/// @see gtc_packing
/// @see vec<3, T, P> unpackRGBM(vec<4, T, P> const & p)
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
template<length_t L, typename T, precision P>
GLM_FUNC_DECL vec<4, T, P> packRGBM(vec<3, T, P> const & rgb);
/// Returns a floating-point vector with components obtained by reinterpreting an integer vector as 16-bit floating-point numbers and converting them to 32-bit floating-point values.
/// The first component of the vector is obtained from the 16 least-significant bits of v;
/// the forth component is obtained from the 16 most-significant bits of v.
///
/// @see gtc_packing
/// @see vec<4, T, P> packRGBM(vec<3, float, P> const & v)
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
template<length_t L, typename T, precision P>
GLM_FUNC_DECL vec<3, T, P> unpackRGBM(vec<4, T, P> const & rgbm);
/// Returns an unsigned integer vector obtained by converting the components of a floating-point vector
/// to the 16-bit floating-point representation found in the OpenGL Specification.
/// The first vector component specifies the 16 least-significant bits of the result;
/// the forth component specifies the 16 most-significant bits.
///
/// @see gtc_packing
/// @see vecType<L, float, P> unpackHalf(vecType<L, uint16, P> const & p)
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
template<length_t L, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_DECL vecType<L, uint16, P> packHalf(vecType<L, float, P> const & v);
/// Returns a floating-point vector with components obtained by reinterpreting an integer vector as 16-bit floating-point numbers and converting them to 32-bit floating-point values.
/// The first component of the vector is obtained from the 16 least-significant bits of v;
/// the forth component is obtained from the 16 most-significant bits of v.
///
/// @see gtc_packing
/// @see vecType<L, uint16, P> packHalf(vecType<L, float, P> const & v)
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
template<length_t L, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_DECL vecType<L, float, P> unpackHalf(vecType<L, uint16, P> const & p);
/// Convert each component of the normalized floating-point vector into unsigned integer values.
///
/// @see gtc_packing
/// @see vecType<L, floatType, P> unpackUnorm(vecType<L, intType, P> const & p);
template<typename uintType, length_t L, typename floatType, precision P>
GLM_FUNC_DECL vec<L, uintType, P> packUnorm(vec<L, floatType, P> const & v);
/// Convert each unsigned integer components of a vector to normalized floating-point values.
///
/// @see gtc_packing
/// @see vecType<L, intType, P> packUnorm(vecType<L, floatType, P> const & v)
template<typename floatType, length_t L, typename uintType, precision P>
GLM_FUNC_DECL vec<L, floatType, P> unpackUnorm(vec<L, uintType, P> const & v);
/// Convert each component of the normalized floating-point vector into signed integer values.
///
/// @see gtc_packing
/// @see vecType<L, floatType, P> unpackSnorm(vecType<L, intType, P> const & p);
template<typename intType, length_t L, typename floatType, precision P>
GLM_FUNC_DECL vec<L, intType, P> packSnorm(vec<L, floatType, P> const & v);
/// Convert each signed integer components of a vector to normalized floating-point values.
///
/// @see gtc_packing
/// @see vecType<L, intType, P> packSnorm(vecType<L, floatType, P> const & v)
template<typename floatType, length_t L, typename intType, precision P>
GLM_FUNC_DECL vec<L, floatType, P> unpackSnorm(vec<L, intType, P> const & v);
/// Convert each component of the normalized floating-point vector into unsigned integer values.
///
/// @see gtc_packing
/// @see vec2 unpackUnorm2x4(uint8 p)
GLM_FUNC_DECL uint8 packUnorm2x4(vec2 const & v);
/// Convert each unsigned integer components of a vector to normalized floating-point values.
///
/// @see gtc_packing
/// @see uint8 packUnorm2x4(vec2 const & v)
GLM_FUNC_DECL vec2 unpackUnorm2x4(uint8 p);
/// Convert each component of the normalized floating-point vector into unsigned integer values.
///
/// @see gtc_packing
/// @see vec4 unpackUnorm4x4(uint16 p)
GLM_FUNC_DECL uint16 packUnorm4x4(vec4 const & v);
/// Convert each unsigned integer components of a vector to normalized floating-point values.
///
/// @see gtc_packing
/// @see uint16 packUnorm4x4(vec4 const & v)
GLM_FUNC_DECL vec4 unpackUnorm4x4(uint16 p);
/// Convert each component of the normalized floating-point vector into unsigned integer values.
///
/// @see gtc_packing
/// @see vec3 unpackUnorm1x5_1x6_1x5(uint16 p)
GLM_FUNC_DECL uint16 packUnorm1x5_1x6_1x5(vec3 const & v);
/// Convert each unsigned integer components of a vector to normalized floating-point values.
///
/// @see gtc_packing
/// @see uint16 packUnorm1x5_1x6_1x5(vec3 const & v)
GLM_FUNC_DECL vec3 unpackUnorm1x5_1x6_1x5(uint16 p);
/// Convert each component of the normalized floating-point vector into unsigned integer values.
///
/// @see gtc_packing
/// @see vec4 unpackUnorm3x5_1x1(uint16 p)
GLM_FUNC_DECL uint16 packUnorm3x5_1x1(vec4 const & v);
/// Convert each unsigned integer components of a vector to normalized floating-point values.
///
/// @see gtc_packing
/// @see uint16 packUnorm3x5_1x1(vec4 const & v)
GLM_FUNC_DECL vec4 unpackUnorm3x5_1x1(uint16 p);
/// Convert each component of the normalized floating-point vector into unsigned integer values.
///
/// @see gtc_packing
/// @see vec3 unpackUnorm2x3_1x2(uint8 p)
GLM_FUNC_DECL uint8 packUnorm2x3_1x2(vec3 const & v);
/// Convert each unsigned integer components of a vector to normalized floating-point values.
///
/// @see gtc_packing
/// @see uint8 packUnorm2x3_1x2(vec3 const & v)
GLM_FUNC_DECL vec3 unpackUnorm2x3_1x2(uint8 p);
/// @}
}// namespace glm
#include "packing.inl"

797
glm/gtc/packing.inl Normal file
View file

@ -0,0 +1,797 @@
/// @ref gtc_packing
/// @file glm/gtc/packing.inl
#include "../common.hpp"
#include "../vec2.hpp"
#include "../vec3.hpp"
#include "../vec4.hpp"
#include "../detail/type_half.hpp"
#include <cstring>
#include <limits>
namespace glm{
namespace detail
{
GLM_FUNC_QUALIFIER glm::uint16 float2half(glm::uint32 f)
{
// 10 bits => EE EEEFFFFF
// 11 bits => EEE EEFFFFFF
// Half bits => SEEEEEFF FFFFFFFF
// Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF
// 0x00007c00 => 00000000 00000000 01111100 00000000
// 0x000003ff => 00000000 00000000 00000011 11111111
// 0x38000000 => 00111000 00000000 00000000 00000000
// 0x7f800000 => 01111111 10000000 00000000 00000000
// 0x00008000 => 00000000 00000000 10000000 00000000
return
((f >> 16) & 0x8000) | // sign
((((f & 0x7f800000) - 0x38000000) >> 13) & 0x7c00) | // exponential
((f >> 13) & 0x03ff); // Mantissa
}
GLM_FUNC_QUALIFIER glm::uint32 float2packed11(glm::uint32 f)
{
// 10 bits => EE EEEFFFFF
// 11 bits => EEE EEFFFFFF
// Half bits => SEEEEEFF FFFFFFFF
// Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF
// 0x000007c0 => 00000000 00000000 00000111 11000000
// 0x00007c00 => 00000000 00000000 01111100 00000000
// 0x000003ff => 00000000 00000000 00000011 11111111
// 0x38000000 => 00111000 00000000 00000000 00000000
// 0x7f800000 => 01111111 10000000 00000000 00000000
// 0x00008000 => 00000000 00000000 10000000 00000000
return
((((f & 0x7f800000) - 0x38000000) >> 17) & 0x07c0) | // exponential
((f >> 17) & 0x003f); // Mantissa
}
GLM_FUNC_QUALIFIER glm::uint32 packed11ToFloat(glm::uint32 p)
{
// 10 bits => EE EEEFFFFF
// 11 bits => EEE EEFFFFFF
// Half bits => SEEEEEFF FFFFFFFF
// Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF
// 0x000007c0 => 00000000 00000000 00000111 11000000
// 0x00007c00 => 00000000 00000000 01111100 00000000
// 0x000003ff => 00000000 00000000 00000011 11111111
// 0x38000000 => 00111000 00000000 00000000 00000000
// 0x7f800000 => 01111111 10000000 00000000 00000000
// 0x00008000 => 00000000 00000000 10000000 00000000
return
((((p & 0x07c0) << 17) + 0x38000000) & 0x7f800000) | // exponential
((p & 0x003f) << 17); // Mantissa
}
GLM_FUNC_QUALIFIER glm::uint32 float2packed10(glm::uint32 f)
{
// 10 bits => EE EEEFFFFF
// 11 bits => EEE EEFFFFFF
// Half bits => SEEEEEFF FFFFFFFF
// Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF
// 0x0000001F => 00000000 00000000 00000000 00011111
// 0x0000003F => 00000000 00000000 00000000 00111111
// 0x000003E0 => 00000000 00000000 00000011 11100000
// 0x000007C0 => 00000000 00000000 00000111 11000000
// 0x00007C00 => 00000000 00000000 01111100 00000000
// 0x000003FF => 00000000 00000000 00000011 11111111
// 0x38000000 => 00111000 00000000 00000000 00000000
// 0x7f800000 => 01111111 10000000 00000000 00000000
// 0x00008000 => 00000000 00000000 10000000 00000000
return
((((f & 0x7f800000) - 0x38000000) >> 18) & 0x03E0) | // exponential
((f >> 18) & 0x001f); // Mantissa
}
GLM_FUNC_QUALIFIER glm::uint32 packed10ToFloat(glm::uint32 p)
{
// 10 bits => EE EEEFFFFF
// 11 bits => EEE EEFFFFFF
// Half bits => SEEEEEFF FFFFFFFF
// Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF
// 0x0000001F => 00000000 00000000 00000000 00011111
// 0x0000003F => 00000000 00000000 00000000 00111111
// 0x000003E0 => 00000000 00000000 00000011 11100000
// 0x000007C0 => 00000000 00000000 00000111 11000000
// 0x00007C00 => 00000000 00000000 01111100 00000000
// 0x000003FF => 00000000 00000000 00000011 11111111
// 0x38000000 => 00111000 00000000 00000000 00000000
// 0x7f800000 => 01111111 10000000 00000000 00000000
// 0x00008000 => 00000000 00000000 10000000 00000000
return
((((p & 0x03E0) << 18) + 0x38000000) & 0x7f800000) | // exponential
((p & 0x001f) << 18); // Mantissa
}
GLM_FUNC_QUALIFIER glm::uint half2float(glm::uint h)
{
return ((h & 0x8000) << 16) | ((( h & 0x7c00) + 0x1C000) << 13) | ((h & 0x03FF) << 13);
}
GLM_FUNC_QUALIFIER glm::uint floatTo11bit(float x)
{
if(x == 0.0f)
return 0u;
else if(glm::isnan(x))
return ~0u;
else if(glm::isinf(x))
return 0x1Fu << 6u;
uint Pack = 0u;
memcpy(&Pack, &x, sizeof(Pack));
return float2packed11(Pack);
}
GLM_FUNC_QUALIFIER float packed11bitToFloat(glm::uint x)
{
if(x == 0)
return 0.0f;
else if(x == ((1 << 11) - 1))
return ~0;//NaN
else if(x == (0x1f << 6))
return ~0;//Inf
uint Result = packed11ToFloat(x);
float Temp = 0;
memcpy(&Temp, &Result, sizeof(Temp));
return Temp;
}
GLM_FUNC_QUALIFIER glm::uint floatTo10bit(float x)
{
if(x == 0.0f)
return 0u;
else if(glm::isnan(x))
return ~0u;
else if(glm::isinf(x))
return 0x1Fu << 5u;
uint Pack = 0;
memcpy(&Pack, &x, sizeof(Pack));
return float2packed10(Pack);
}
GLM_FUNC_QUALIFIER float packed10bitToFloat(glm::uint x)
{
if(x == 0)
return 0.0f;
else if(x == ((1 << 10) - 1))
return ~0;//NaN
else if(x == (0x1f << 5))
return ~0;//Inf
uint Result = packed10ToFloat(x);
float Temp = 0;
memcpy(&Temp, &Result, sizeof(Temp));
return Temp;
}
// GLM_FUNC_QUALIFIER glm::uint f11_f11_f10(float x, float y, float z)
// {
// return ((floatTo11bit(x) & ((1 << 11) - 1)) << 0) | ((floatTo11bit(y) & ((1 << 11) - 1)) << 11) | ((floatTo10bit(z) & ((1 << 10) - 1)) << 22);
// }
union u3u3u2
{
struct
{
uint x : 3;
uint y : 3;
uint z : 2;
} data;
uint8 pack;
};
union u4u4
{
struct
{
uint x : 4;
uint y : 4;
} data;
uint8 pack;
};
union u4u4u4u4
{
struct
{
uint x : 4;
uint y : 4;
uint z : 4;
uint w : 4;
} data;
uint16 pack;
};
union u5u6u5
{
struct
{
uint x : 5;
uint y : 6;
uint z : 5;
} data;
uint16 pack;
};
union u5u5u5u1
{
struct
{
uint x : 5;
uint y : 5;
uint z : 5;
uint w : 1;
} data;
uint16 pack;
};
union u10u10u10u2
{
struct
{
uint x : 10;
uint y : 10;
uint z : 10;
uint w : 2;
} data;
uint32 pack;
};
union i10i10i10i2
{
struct
{
int x : 10;
int y : 10;
int z : 10;
int w : 2;
} data;
uint32 pack;
};
union u9u9u9e5
{
struct
{
uint x : 9;
uint y : 9;
uint z : 9;
uint w : 5;
} data;
uint32 pack;
};
template<length_t L, precision P, template<length_t, typename, precision> class vecType>
struct compute_half
{};
template<precision P>
struct compute_half<1, P, vec>
{
GLM_FUNC_QUALIFIER static vec<1, uint16, P> pack(vec<1, float, P> const & v)
{
int16 const Unpack(detail::toFloat16(v.x));
u16vec1 Packed(uninitialize);
memcpy(&Packed, &Unpack, sizeof(Packed));
return Packed;
}
GLM_FUNC_QUALIFIER static vec<1, float, P> unpack(vec<1, uint16, P> const & v)
{
i16vec1 Unpack(uninitialize);
memcpy(&Unpack, &v, sizeof(Unpack));
return vec<1, float, P>(detail::toFloat32(v.x));
}
};
template<precision P>
struct compute_half<2, P, vec>
{
GLM_FUNC_QUALIFIER static vec<2, uint16, P> pack(vec<2, float, P> const & v)
{
vec<2, int16, P> const Unpack(detail::toFloat16(v.x), detail::toFloat16(v.y));
u16vec2 Packed(uninitialize);
memcpy(&Packed, &Unpack, sizeof(Packed));
return Packed;
}
GLM_FUNC_QUALIFIER static vec<2, float, P> unpack(vec<2, uint16, P> const & v)
{
i16vec2 Unpack(uninitialize);
memcpy(&Unpack, &v, sizeof(Unpack));
return vec<2, float, P>(detail::toFloat32(v.x), detail::toFloat32(v.y));
}
};
template<precision P>
struct compute_half<3, P, vec>
{
GLM_FUNC_QUALIFIER static vec<3, uint16, P> pack(vec<3, float, P> const & v)
{
vec<3, int16, P> const Unpack(detail::toFloat16(v.x), detail::toFloat16(v.y), detail::toFloat16(v.z));
u16vec3 Packed(uninitialize);
memcpy(&Packed, &Unpack, sizeof(Packed));
return Packed;
}
GLM_FUNC_QUALIFIER static vec<3, float, P> unpack(vec<3, uint16, P> const & v)
{
i16vec3 Unpack(uninitialize);
memcpy(&Unpack, &v, sizeof(Unpack));
return vec<3, float, P>(detail::toFloat32(v.x), detail::toFloat32(v.y), detail::toFloat32(v.z));
}
};
template<precision P>
struct compute_half<4, P, vec>
{
GLM_FUNC_QUALIFIER static vec<4, uint16, P> pack(vec<4, float, P> const & v)
{
vec<4, int16, P> const Unpack(detail::toFloat16(v.x), detail::toFloat16(v.y), detail::toFloat16(v.z), detail::toFloat16(v.w));
u16vec4 Packed(uninitialize);
memcpy(&Packed, &Unpack, sizeof(Packed));
return Packed;
}
GLM_FUNC_QUALIFIER static vec<4, float, P> unpack(vec<4, uint16, P> const & v)
{
i16vec4 Unpack(uninitialize);
memcpy(&Unpack, &v, sizeof(Unpack));
return vec<4, float, P>(detail::toFloat32(v.x), detail::toFloat32(v.y), detail::toFloat32(v.z), detail::toFloat32(v.w));
}
};
}//namespace detail
GLM_FUNC_QUALIFIER uint8 packUnorm1x8(float v)
{
return static_cast<uint8>(round(clamp(v, 0.0f, 1.0f) * 255.0f));
}
GLM_FUNC_QUALIFIER float unpackUnorm1x8(uint8 p)
{
float const Unpack(p);
return Unpack * static_cast<float>(0.0039215686274509803921568627451); // 1 / 255
}
GLM_FUNC_QUALIFIER uint16 packUnorm2x8(vec2 const & v)
{
u8vec2 const Topack(round(clamp(v, 0.0f, 1.0f) * 255.0f));
uint16 Unpack = 0;
memcpy(&Unpack, &Topack, sizeof(Unpack));
return Unpack;
}
GLM_FUNC_QUALIFIER vec2 unpackUnorm2x8(uint16 p)
{
u8vec2 Unpack(uninitialize);
memcpy(&Unpack, &p, sizeof(Unpack));
return vec2(Unpack) * float(0.0039215686274509803921568627451); // 1 / 255
}
GLM_FUNC_QUALIFIER uint8 packSnorm1x8(float v)
{
int8 const Topack(static_cast<int8>(round(clamp(v ,-1.0f, 1.0f) * 127.0f)));
uint8 Packed = 0;
memcpy(&Packed, &Topack, sizeof(Packed));
return Packed;
}
GLM_FUNC_QUALIFIER float unpackSnorm1x8(uint8 p)
{
int8 Unpack = 0;
memcpy(&Unpack, &p, sizeof(Unpack));
return clamp(
static_cast<float>(Unpack) * 0.00787401574803149606299212598425f, // 1.0f / 127.0f
-1.0f, 1.0f);
}
GLM_FUNC_QUALIFIER uint16 packSnorm2x8(vec2 const & v)
{
i8vec2 const Topack(round(clamp(v, -1.0f, 1.0f) * 127.0f));
uint16 Packed = 0;
memcpy(&Packed, &Topack, sizeof(Packed));
return Packed;
}
GLM_FUNC_QUALIFIER vec2 unpackSnorm2x8(uint16 p)
{
i8vec2 Unpack(uninitialize);
memcpy(&Unpack, &p, sizeof(Unpack));
return clamp(
vec2(Unpack) * 0.00787401574803149606299212598425f, // 1.0f / 127.0f
-1.0f, 1.0f);
}
GLM_FUNC_QUALIFIER uint16 packUnorm1x16(float s)
{
return static_cast<uint16>(round(clamp(s, 0.0f, 1.0f) * 65535.0f));
}
GLM_FUNC_QUALIFIER float unpackUnorm1x16(uint16 p)
{
float const Unpack(p);
return Unpack * 1.5259021896696421759365224689097e-5f; // 1.0 / 65535.0
}
GLM_FUNC_QUALIFIER uint64 packUnorm4x16(vec4 const & v)
{
u16vec4 const Topack(round(clamp(v , 0.0f, 1.0f) * 65535.0f));
uint64 Packed = 0;
memcpy(&Packed, &Topack, sizeof(Packed));
return Packed;
}
GLM_FUNC_QUALIFIER vec4 unpackUnorm4x16(uint64 p)
{
u16vec4 Unpack(uninitialize);
memcpy(&Unpack, &p, sizeof(Unpack));
return vec4(Unpack) * 1.5259021896696421759365224689097e-5f; // 1.0 / 65535.0
}
GLM_FUNC_QUALIFIER uint16 packSnorm1x16(float v)
{
int16 const Topack = static_cast<int16>(round(clamp(v ,-1.0f, 1.0f) * 32767.0f));
uint16 Packed = 0;
memcpy(&Packed, &Topack, sizeof(Packed));
return Packed;
}
GLM_FUNC_QUALIFIER float unpackSnorm1x16(uint16 p)
{
int16 Unpack = 0;
memcpy(&Unpack, &p, sizeof(Unpack));
return clamp(
static_cast<float>(Unpack) * 3.0518509475997192297128208258309e-5f, //1.0f / 32767.0f,
-1.0f, 1.0f);
}
GLM_FUNC_QUALIFIER uint64 packSnorm4x16(vec4 const & v)
{
i16vec4 const Topack(round(clamp(v ,-1.0f, 1.0f) * 32767.0f));
uint64 Packed = 0;
memcpy(&Packed, &Topack, sizeof(Packed));
return Packed;
}
GLM_FUNC_QUALIFIER vec4 unpackSnorm4x16(uint64 p)
{
i16vec4 Unpack(uninitialize);
memcpy(&Unpack, &p, sizeof(Unpack));
return clamp(
vec4(Unpack) * 3.0518509475997192297128208258309e-5f, //1.0f / 32767.0f,
-1.0f, 1.0f);
}
GLM_FUNC_QUALIFIER uint16 packHalf1x16(float v)
{
int16 const Topack(detail::toFloat16(v));
uint16 Packed = 0;
memcpy(&Packed, &Topack, sizeof(Packed));
return Packed;
}
GLM_FUNC_QUALIFIER float unpackHalf1x16(uint16 v)
{
int16 Unpack = 0;
memcpy(&Unpack, &v, sizeof(Unpack));
return detail::toFloat32(Unpack);
}
GLM_FUNC_QUALIFIER uint64 packHalf4x16(glm::vec4 const & v)
{
i16vec4 const Unpack(
detail::toFloat16(v.x),
detail::toFloat16(v.y),
detail::toFloat16(v.z),
detail::toFloat16(v.w));
uint64 Packed = 0;
memcpy(&Packed, &Unpack, sizeof(Packed));
return Packed;
}
GLM_FUNC_QUALIFIER glm::vec4 unpackHalf4x16(uint64 v)
{
i16vec4 Unpack(uninitialize);
memcpy(&Unpack, &v, sizeof(Unpack));
return vec4(
detail::toFloat32(Unpack.x),
detail::toFloat32(Unpack.y),
detail::toFloat32(Unpack.z),
detail::toFloat32(Unpack.w));
}
GLM_FUNC_QUALIFIER uint32 packI3x10_1x2(ivec4 const & v)
{
detail::i10i10i10i2 Result;
Result.data.x = v.x;
Result.data.y = v.y;
Result.data.z = v.z;
Result.data.w = v.w;
return Result.pack;
}
GLM_FUNC_QUALIFIER ivec4 unpackI3x10_1x2(uint32 v)
{
detail::i10i10i10i2 Unpack;
Unpack.pack = v;
return ivec4(
Unpack.data.x,
Unpack.data.y,
Unpack.data.z,
Unpack.data.w);
}
GLM_FUNC_QUALIFIER uint32 packU3x10_1x2(uvec4 const & v)
{
detail::u10u10u10u2 Result;
Result.data.x = v.x;
Result.data.y = v.y;
Result.data.z = v.z;
Result.data.w = v.w;
return Result.pack;
}
GLM_FUNC_QUALIFIER uvec4 unpackU3x10_1x2(uint32 v)
{
detail::u10u10u10u2 Unpack;
Unpack.pack = v;
return uvec4(
Unpack.data.x,
Unpack.data.y,
Unpack.data.z,
Unpack.data.w);
}
GLM_FUNC_QUALIFIER uint32 packSnorm3x10_1x2(vec4 const & v)
{
ivec4 const Pack(round(clamp(v,-1.0f, 1.0f) * vec4(511.f, 511.f, 511.f, 1.f)));
detail::i10i10i10i2 Result;
Result.data.x = Pack.x;
Result.data.y = Pack.y;
Result.data.z = Pack.z;
Result.data.w = Pack.w;
return Result.pack;
}
GLM_FUNC_QUALIFIER vec4 unpackSnorm3x10_1x2(uint32 v)
{
detail::i10i10i10i2 Unpack;
Unpack.pack = v;
vec4 const Result(Unpack.data.x, Unpack.data.y, Unpack.data.z, Unpack.data.w);
return clamp(Result * vec4(1.f / 511.f, 1.f / 511.f, 1.f / 511.f, 1.f), -1.0f, 1.0f);
}
GLM_FUNC_QUALIFIER uint32 packUnorm3x10_1x2(vec4 const & v)
{
uvec4 const Unpack(round(clamp(v, 0.0f, 1.0f) * vec4(1023.f, 1023.f, 1023.f, 3.f)));
detail::u10u10u10u2 Result;
Result.data.x = Unpack.x;
Result.data.y = Unpack.y;
Result.data.z = Unpack.z;
Result.data.w = Unpack.w;
return Result.pack;
}
GLM_FUNC_QUALIFIER vec4 unpackUnorm3x10_1x2(uint32 v)
{
vec4 const ScaleFactors(1.0f / 1023.f, 1.0f / 1023.f, 1.0f / 1023.f, 1.0f / 3.f);
detail::u10u10u10u2 Unpack;
Unpack.pack = v;
return vec4(Unpack.data.x, Unpack.data.y, Unpack.data.z, Unpack.data.w) * ScaleFactors;
}
GLM_FUNC_QUALIFIER uint32 packF2x11_1x10(vec3 const & v)
{
return
((detail::floatTo11bit(v.x) & ((1 << 11) - 1)) << 0) |
((detail::floatTo11bit(v.y) & ((1 << 11) - 1)) << 11) |
((detail::floatTo10bit(v.z) & ((1 << 10) - 1)) << 22);
}
GLM_FUNC_QUALIFIER vec3 unpackF2x11_1x10(uint32 v)
{
return vec3(
detail::packed11bitToFloat(v >> 0),
detail::packed11bitToFloat(v >> 11),
detail::packed10bitToFloat(v >> 22));
}
GLM_FUNC_QUALIFIER uint32 packF3x9_E1x5(vec3 const & v)
{
float const SharedExpMax = (pow(2.0f, 9.0f - 1.0f) / pow(2.0f, 9.0f)) * pow(2.0f, 31.f - 15.f);
vec3 const Color = clamp(v, 0.0f, SharedExpMax);
float const MaxColor = max(Color.x, max(Color.y, Color.z));
float const ExpSharedP = max(-15.f - 1.f, floor(log2(MaxColor))) + 1.0f + 15.f;
float const MaxShared = floor(MaxColor / pow(2.0f, (ExpSharedP - 16.f - 9.f)) + 0.5f);
float const ExpShared = MaxShared == pow(2.0f, 9.0f) ? ExpSharedP + 1.0f : ExpSharedP;
uvec3 const ColorComp(floor(Color / pow(2.f, (ExpShared - 15.f - 9.f)) + 0.5f));
detail::u9u9u9e5 Unpack;
Unpack.data.x = ColorComp.x;
Unpack.data.y = ColorComp.y;
Unpack.data.z = ColorComp.z;
Unpack.data.w = uint(ExpShared);
return Unpack.pack;
}
GLM_FUNC_QUALIFIER vec3 unpackF3x9_E1x5(uint32 v)
{
detail::u9u9u9e5 Unpack;
Unpack.pack = v;
return vec3(Unpack.data.x, Unpack.data.y, Unpack.data.z) * pow(2.0f, Unpack.data.w - 15.f - 9.f);
}
// Based on Brian Karis http://graphicrants.blogspot.fr/2009/04/rgbm-color-encoding.html
template<typename T, precision P>
GLM_FUNC_QUALIFIER vec<4, T, P> packRGBM(vec<3, T, P> const & rgb)
{
vec<3, T, P> const Color(rgb * static_cast<T>(1.0 / 6.0));
T Alpha = clamp(max(max(Color.x, Color.y), max(Color.z, static_cast<T>(1e-6))), static_cast<T>(0), static_cast<T>(1));
Alpha = ceil(Alpha * static_cast<T>(255.0)) / static_cast<T>(255.0);
return vec<4, T, P>(Color / Alpha, Alpha);
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER vec<3, T, P> unpackRGBM(vec<4, T, P> const & rgbm)
{
return vec<3, T, P>(rgbm.x, rgbm.y, rgbm.z) * rgbm.w * static_cast<T>(6);
}
template<length_t L, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, uint16, P> packHalf(vecType<L, float, P> const & v)
{
return detail::compute_half<L, P, vecType>::pack(v);
}
template<length_t L, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, float, P> unpackHalf(vecType<L, uint16, P> const & v)
{
return detail::compute_half<L, P, vecType>::unpack(v);
}
template<typename uintType, length_t L, typename floatType, precision P>
GLM_FUNC_QUALIFIER vec<L, uintType, P> packUnorm(vec<L, floatType, P> const& v)
{
GLM_STATIC_ASSERT(std::numeric_limits<uintType>::is_integer, "uintType must be an integer type");
GLM_STATIC_ASSERT(std::numeric_limits<floatType>::is_iec559, "floatType must be a floating point type");
return vec<L, uintType, P>(round(clamp(v, static_cast<floatType>(0), static_cast<floatType>(1)) * static_cast<floatType>(std::numeric_limits<uintType>::max())));
}
template<typename floatType, length_t L, typename uintType, precision P>
GLM_FUNC_QUALIFIER vec<L, floatType, P> unpackUnorm(vec<L, uintType, P> const& v)
{
GLM_STATIC_ASSERT(std::numeric_limits<uintType>::is_integer, "uintType must be an integer type");
GLM_STATIC_ASSERT(std::numeric_limits<floatType>::is_iec559, "floatType must be a floating point type");
return vec<L, float, P>(v) * (static_cast<floatType>(1) / static_cast<floatType>(std::numeric_limits<uintType>::max()));
}
template<typename intType, length_t L, typename floatType, precision P>
GLM_FUNC_QUALIFIER vec<L, intType, P> packSnorm(vec<L, floatType, P> const & v)
{
GLM_STATIC_ASSERT(std::numeric_limits<intType>::is_integer, "uintType must be an integer type");
GLM_STATIC_ASSERT(std::numeric_limits<floatType>::is_iec559, "floatType must be a floating point type");
return vec<L, intType, P>(round(clamp(v , static_cast<floatType>(-1), static_cast<floatType>(1)) * static_cast<floatType>(std::numeric_limits<intType>::max())));
}
template<typename floatType, length_t L, typename intType, precision P>
GLM_FUNC_QUALIFIER vec<L, floatType, P> unpackSnorm(vec<L, intType, P> const & v)
{
GLM_STATIC_ASSERT(std::numeric_limits<intType>::is_integer, "uintType must be an integer type");
GLM_STATIC_ASSERT(std::numeric_limits<floatType>::is_iec559, "floatType must be a floating point type");
return clamp(vec<L, floatType, P>(v) * (static_cast<floatType>(1) / static_cast<floatType>(std::numeric_limits<intType>::max())), static_cast<floatType>(-1), static_cast<floatType>(1));
}
GLM_FUNC_QUALIFIER uint8 packUnorm2x4(vec2 const & v)
{
u32vec2 const Unpack(round(clamp(v, 0.0f, 1.0f) * 15.0f));
detail::u4u4 Result;
Result.data.x = Unpack.x;
Result.data.y = Unpack.y;
return Result.pack;
}
GLM_FUNC_QUALIFIER vec2 unpackUnorm2x4(uint8 v)
{
float const ScaleFactor(1.f / 15.f);
detail::u4u4 Unpack;
Unpack.pack = v;
return vec2(Unpack.data.x, Unpack.data.y) * ScaleFactor;
}
GLM_FUNC_QUALIFIER uint16 packUnorm4x4(vec4 const & v)
{
u32vec4 const Unpack(round(clamp(v, 0.0f, 1.0f) * 15.0f));
detail::u4u4u4u4 Result;
Result.data.x = Unpack.x;
Result.data.y = Unpack.y;
Result.data.z = Unpack.z;
Result.data.w = Unpack.w;
return Result.pack;
}
GLM_FUNC_QUALIFIER vec4 unpackUnorm4x4(uint16 v)
{
float const ScaleFactor(1.f / 15.f);
detail::u4u4u4u4 Unpack;
Unpack.pack = v;
return vec4(Unpack.data.x, Unpack.data.y, Unpack.data.z, Unpack.data.w) * ScaleFactor;
}
GLM_FUNC_QUALIFIER uint16 packUnorm1x5_1x6_1x5(vec3 const & v)
{
u32vec3 const Unpack(round(clamp(v, 0.0f, 1.0f) * vec3(31.f, 63.f, 31.f)));
detail::u5u6u5 Result;
Result.data.x = Unpack.x;
Result.data.y = Unpack.y;
Result.data.z = Unpack.z;
return Result.pack;
}
GLM_FUNC_QUALIFIER vec3 unpackUnorm1x5_1x6_1x5(uint16 v)
{
vec3 const ScaleFactor(1.f / 31.f, 1.f / 63.f, 1.f / 31.f);
detail::u5u6u5 Unpack;
Unpack.pack = v;
return vec3(Unpack.data.x, Unpack.data.y, Unpack.data.z) * ScaleFactor;
}
GLM_FUNC_QUALIFIER uint16 packUnorm3x5_1x1(vec4 const & v)
{
u32vec4 const Unpack(round(clamp(v, 0.0f, 1.0f) * vec4(31.f, 31.f, 31.f, 1.f)));
detail::u5u5u5u1 Result;
Result.data.x = Unpack.x;
Result.data.y = Unpack.y;
Result.data.z = Unpack.z;
Result.data.w = Unpack.w;
return Result.pack;
}
GLM_FUNC_QUALIFIER vec4 unpackUnorm3x5_1x1(uint16 v)
{
vec4 const ScaleFactor(1.f / 31.f, 1.f / 31.f, 1.f / 31.f, 1.f);
detail::u5u5u5u1 Unpack;
Unpack.pack = v;
return vec4(Unpack.data.x, Unpack.data.y, Unpack.data.z, Unpack.data.w) * ScaleFactor;
}
GLM_FUNC_QUALIFIER uint8 packUnorm2x3_1x2(vec3 const & v)
{
u32vec3 const Unpack(round(clamp(v, 0.0f, 1.0f) * vec3(7.f, 7.f, 3.f)));
detail::u3u3u2 Result;
Result.data.x = Unpack.x;
Result.data.y = Unpack.y;
Result.data.z = Unpack.z;
return Result.pack;
}
GLM_FUNC_QUALIFIER vec3 unpackUnorm2x3_1x2(uint8 v)
{
vec3 const ScaleFactor(1.f / 7.f, 1.f / 7.f, 1.f / 3.f);
detail::u3u3u2 Unpack;
Unpack.pack = v;
return vec3(Unpack.data.x, Unpack.data.y, Unpack.data.z) * ScaleFactor;
}
}//namespace glm

396
glm/gtc/quaternion.hpp Normal file
View file

@ -0,0 +1,396 @@
/// @ref gtc_quaternion
/// @file glm/gtc/quaternion.hpp
///
/// @see core (dependence)
/// @see gtc_constants (dependence)
///
/// @defgroup gtc_quaternion GLM_GTC_quaternion
/// @ingroup gtc
///
/// @brief Defines a templated quaternion type and several quaternion operations.
///
/// <glm/gtc/quaternion.hpp> need to be included to use these functionalities.
#pragma once
// Dependency:
#include "../mat3x3.hpp"
#include "../mat4x4.hpp"
#include "../vec3.hpp"
#include "../vec4.hpp"
#include "../gtc/constants.hpp"
#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
# pragma message("GLM: GLM_GTC_quaternion extension included")
#endif
namespace glm
{
/// @addtogroup gtc_quaternion
/// @{
template<typename T, precision P = defaultp>
struct tquat
{
// -- Implementation detail --
typedef tquat<T, P> type;
typedef T value_type;
// -- Data --
# if GLM_HAS_ALIGNED_TYPE
# if GLM_COMPILER & GLM_COMPILER_GCC
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wpedantic"
# endif
# if GLM_COMPILER & GLM_COMPILER_CLANG
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wgnu-anonymous-struct"
# pragma clang diagnostic ignored "-Wnested-anon-types"
# endif
union
{
struct { T x, y, z, w;};
typename detail::storage<T, sizeof(T) * 4, detail::is_aligned<P>::value>::type data;
};
# if GLM_COMPILER & GLM_COMPILER_CLANG
# pragma clang diagnostic pop
# endif
# if GLM_COMPILER & GLM_COMPILER_GCC
# pragma GCC diagnostic pop
# endif
# else
T x, y, z, w;
# endif
// -- Component accesses --
typedef length_t length_type;
/// Return the count of components of a quaternion
GLM_FUNC_DECL static length_type length(){return 4;}
GLM_FUNC_DECL T & operator[](length_type i);
GLM_FUNC_DECL T const & operator[](length_type i) const;
// -- Implicit basic constructors --
GLM_FUNC_DECL GLM_CONSTEXPR tquat() GLM_DEFAULT_CTOR;
GLM_FUNC_DECL GLM_CONSTEXPR tquat(tquat<T, P> const& q) GLM_DEFAULT;
template<precision Q>
GLM_FUNC_DECL GLM_CONSTEXPR tquat(tquat<T, Q> const& q);
// -- Explicit basic constructors --
GLM_FUNC_DECL GLM_CONSTEXPR_CTOR explicit tquat(ctor);
GLM_FUNC_DECL GLM_CONSTEXPR tquat(T s, vec<3, T, P> const& v);
GLM_FUNC_DECL GLM_CONSTEXPR tquat(T w, T x, T y, T z);
// -- Conversion constructors --
template<typename U, precision Q>
GLM_FUNC_DECL GLM_CONSTEXPR GLM_EXPLICIT tquat(tquat<U, Q> const& q);
/// Explicit conversion operators
# if GLM_HAS_EXPLICIT_CONVERSION_OPERATORS
GLM_FUNC_DECL explicit operator mat<3, 3, T, P>();
GLM_FUNC_DECL explicit operator mat<4, 4, T, P>();
# endif
/// Create a quaternion from two normalized axis
///
/// @param u A first normalized axis
/// @param v A second normalized axis
/// @see gtc_quaternion
/// @see http://lolengine.net/blog/2013/09/18/beautiful-maths-quaternion-from-vectors
GLM_FUNC_DECL tquat(vec<3, T, P> const & u, vec<3, T, P> const & v);
/// Build a quaternion from euler angles (pitch, yaw, roll), in radians.
GLM_FUNC_DECL GLM_EXPLICIT tquat(vec<3, T, P> const& eulerAngles);
GLM_FUNC_DECL GLM_EXPLICIT tquat(mat<3, 3, T, P> const& q);
GLM_FUNC_DECL GLM_EXPLICIT tquat(mat<4, 4, T, P> const& q);
// -- Unary arithmetic operators --
GLM_FUNC_DECL tquat<T, P> & operator=(tquat<T, P> const& q) GLM_DEFAULT;
template<typename U>
GLM_FUNC_DECL tquat<T, P> & operator=(tquat<U, P> const& q);
template<typename U>
GLM_FUNC_DECL tquat<T, P> & operator+=(tquat<U, P> const& q);
template<typename U>
GLM_FUNC_DECL tquat<T, P> & operator-=(tquat<U, P> const& q);
template<typename U>
GLM_FUNC_DECL tquat<T, P> & operator*=(tquat<U, P> const& q);
template<typename U>
GLM_FUNC_DECL tquat<T, P> & operator*=(U s);
template<typename U>
GLM_FUNC_DECL tquat<T, P> & operator/=(U s);
};
// -- Unary bit operators --
template<typename T, precision P>
GLM_FUNC_DECL tquat<T, P> operator+(tquat<T, P> const& q);
template<typename T, precision P>
GLM_FUNC_DECL tquat<T, P> operator-(tquat<T, P> const& q);
// -- Binary operators --
template<typename T, precision P>
GLM_FUNC_DECL tquat<T, P> operator+(tquat<T, P> const & q, tquat<T, P> const & p);
template<typename T, precision P>
GLM_FUNC_DECL tquat<T, P> operator*(tquat<T, P> const & q, tquat<T, P> const & p);
template<typename T, precision P>
GLM_FUNC_DECL vec<3, T, P> operator*(tquat<T, P> const & q, vec<3, T, P> const & v);
template<typename T, precision P>
GLM_FUNC_DECL vec<3, T, P> operator*(vec<3, T, P> const & v, tquat<T, P> const & q);
template<typename T, precision P>
GLM_FUNC_DECL vec<4, T, P> operator*(tquat<T, P> const & q, vec<4, T, P> const & v);
template<typename T, precision P>
GLM_FUNC_DECL vec<4, T, P> operator*(vec<4, T, P> const & v, tquat<T, P> const & q);
template<typename T, precision P>
GLM_FUNC_DECL tquat<T, P> operator*(tquat<T, P> const & q, T const & s);
template<typename T, precision P>
GLM_FUNC_DECL tquat<T, P> operator*(T const & s, tquat<T, P> const & q);
template<typename T, precision P>
GLM_FUNC_DECL tquat<T, P> operator/(tquat<T, P> const & q, T const & s);
// -- Boolean operators --
template<typename T, precision P>
GLM_FUNC_DECL bool operator==(tquat<T, P> const & q1, tquat<T, P> const & q2);
template<typename T, precision P>
GLM_FUNC_DECL bool operator!=(tquat<T, P> const & q1, tquat<T, P> const & q2);
/// Returns the length of the quaternion.
///
/// @see gtc_quaternion
template<typename T, precision P>
GLM_FUNC_DECL T length(tquat<T, P> const & q);
/// Returns the normalized quaternion.
///
/// @see gtc_quaternion
template<typename T, precision P>
GLM_FUNC_DECL tquat<T, P> normalize(tquat<T, P> const & q);
/// Returns dot product of q1 and q2, i.e., q1[0] * q2[0] + q1[1] * q2[1] + ...
///
/// @see gtc_quaternion
template<typename T, precision P>
GLM_FUNC_DECL T dot(tquat<T, P> const & x, tquat<T, P> const & y);
/// Spherical linear interpolation of two quaternions.
/// The interpolation is oriented and the rotation is performed at constant speed.
/// For short path spherical linear interpolation, use the slerp function.
///
/// @param x A quaternion
/// @param y A quaternion
/// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1].
/// @tparam T Value type used to build the quaternion. Supported: half, float or double.
/// @see gtc_quaternion
/// @see - slerp(tquat<T, P> const & x, tquat<T, P> const & y, T const & a)
template<typename T, precision P>
GLM_FUNC_DECL tquat<T, P> mix(tquat<T, P> const & x, tquat<T, P> const & y, T a);
/// Linear interpolation of two quaternions.
/// The interpolation is oriented.
///
/// @param x A quaternion
/// @param y A quaternion
/// @param a Interpolation factor. The interpolation is defined in the range [0, 1].
/// @tparam T Value type used to build the quaternion. Supported: half, float or double.
/// @see gtc_quaternion
template<typename T, precision P>
GLM_FUNC_DECL tquat<T, P> lerp(tquat<T, P> const & x, tquat<T, P> const & y, T a);
/// Spherical linear interpolation of two quaternions.
/// The interpolation always take the short path and the rotation is performed at constant speed.
///
/// @param x A quaternion
/// @param y A quaternion
/// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1].
/// @tparam T Value type used to build the quaternion. Supported: half, float or double.
/// @see gtc_quaternion
template<typename T, precision P>
GLM_FUNC_DECL tquat<T, P> slerp(tquat<T, P> const & x, tquat<T, P> const & y, T a);
/// Returns the q conjugate.
///
/// @see gtc_quaternion
template<typename T, precision P>
GLM_FUNC_DECL tquat<T, P> conjugate(tquat<T, P> const & q);
/// Returns the q inverse.
///
/// @see gtc_quaternion
template<typename T, precision P>
GLM_FUNC_DECL tquat<T, P> inverse(tquat<T, P> const & q);
/// Rotates a quaternion from a vector of 3 components axis and an angle.
///
/// @param q Source orientation
/// @param angle Angle expressed in radians.
/// @param axis Axis of the rotation
///
/// @see gtc_quaternion
template<typename T, precision P>
GLM_FUNC_DECL tquat<T, P> rotate(tquat<T, P> const & q, T const & angle, vec<3, T, P> const & axis);
/// Returns euler angles, pitch as x, yaw as y, roll as z.
/// The result is expressed in radians if GLM_FORCE_RADIANS is defined or degrees otherwise.
///
/// @see gtc_quaternion
template<typename T, precision P>
GLM_FUNC_DECL vec<3, T, P> eulerAngles(tquat<T, P> const & x);
/// Returns roll value of euler angles expressed in radians.
///
/// @see gtx_quaternion
template<typename T, precision P>
GLM_FUNC_DECL T roll(tquat<T, P> const & x);
/// Returns pitch value of euler angles expressed in radians.
///
/// @see gtx_quaternion
template<typename T, precision P>
GLM_FUNC_DECL T pitch(tquat<T, P> const & x);
/// Returns yaw value of euler angles expressed in radians.
///
/// @see gtx_quaternion
template<typename T, precision P>
GLM_FUNC_DECL T yaw(tquat<T, P> const & x);
/// Converts a quaternion to a 3 * 3 matrix.
///
/// @see gtc_quaternion
template<typename T, precision P>
GLM_FUNC_DECL mat<3, 3, T, P> mat3_cast(tquat<T, P> const & x);
/// Converts a quaternion to a 4 * 4 matrix.
///
/// @see gtc_quaternion
template<typename T, precision P>
GLM_FUNC_DECL mat<4, 4, T, P> mat4_cast(tquat<T, P> const & x);
/// Converts a 3 * 3 matrix to a quaternion.
///
/// @see gtc_quaternion
template<typename T, precision P>
GLM_FUNC_DECL tquat<T, P> quat_cast(mat<3, 3, T, P> const & x);
/// Converts a 4 * 4 matrix to a quaternion.
///
/// @see gtc_quaternion
template<typename T, precision P>
GLM_FUNC_DECL tquat<T, P> quat_cast(mat<4, 4, T, P> const & x);
/// Returns the quaternion rotation angle.
///
/// @see gtc_quaternion
template<typename T, precision P>
GLM_FUNC_DECL T angle(tquat<T, P> const & x);
/// Returns the q rotation axis.
///
/// @see gtc_quaternion
template<typename T, precision P>
GLM_FUNC_DECL vec<3, T, P> axis(tquat<T, P> const & x);
/// Build a quaternion from an angle and a normalized axis.
///
/// @param angle Angle expressed in radians.
/// @param axis Axis of the quaternion, must be normalized.
///
/// @see gtc_quaternion
template<typename T, precision P>
GLM_FUNC_DECL tquat<T, P> angleAxis(T const & angle, vec<3, T, P> const & axis);
/// Returns the component-wise comparison result of x < y.
///
/// @tparam quatType Floating-point quaternion types.
///
/// @see gtc_quaternion
template<typename T, precision P>
GLM_FUNC_DECL vec<4, bool, P> lessThan(tquat<T, P> const & x, tquat<T, P> const & y);
/// Returns the component-wise comparison of result x <= y.
///
/// @tparam quatType Floating-point quaternion types.
///
/// @see gtc_quaternion
template<typename T, precision P>
GLM_FUNC_DECL vec<4, bool, P> lessThanEqual(tquat<T, P> const & x, tquat<T, P> const & y);
/// Returns the component-wise comparison of result x > y.
///
/// @tparam quatType Floating-point quaternion types.
///
/// @see gtc_quaternion
template<typename T, precision P>
GLM_FUNC_DECL vec<4, bool, P> greaterThan(tquat<T, P> const & x, tquat<T, P> const & y);
/// Returns the component-wise comparison of result x >= y.
///
/// @tparam quatType Floating-point quaternion types.
///
/// @see gtc_quaternion
template<typename T, precision P>
GLM_FUNC_DECL vec<4, bool, P> greaterThanEqual(tquat<T, P> const & x, tquat<T, P> const & y);
/// Returns the component-wise comparison of result x == y.
///
/// @tparam quatType Floating-point quaternion types.
///
/// @see gtc_quaternion
template<typename T, precision P>
GLM_FUNC_DECL vec<4, bool, P> equal(tquat<T, P> const & x, tquat<T, P> const & y);
/// Returns the component-wise comparison of result x != y.
///
/// @tparam quatType Floating-point quaternion types.
///
/// @see gtc_quaternion
template<typename T, precision P>
GLM_FUNC_DECL vec<4, bool, P> notEqual(tquat<T, P> const & x, tquat<T, P> const & y);
/// Returns true if x holds a NaN (not a number)
/// representation in the underlying implementation's set of
/// floating point representations. Returns false otherwise,
/// including for implementations with no NaN
/// representations.
///
/// /!\ When using compiler fast math, this function may fail.
///
/// @tparam genType Floating-point scalar or vector types.
template<typename T, precision P>
GLM_FUNC_DECL vec<4, bool, P> isnan(tquat<T, P> const & x);
/// Returns true if x holds a positive infinity or negative
/// infinity representation in the underlying implementation's
/// set of floating point representations. Returns false
/// otherwise, including for implementations with no infinity
/// representations.
///
/// @tparam genType Floating-point scalar or vector types.
template<typename T, precision P>
GLM_FUNC_DECL vec<4, bool, P> isinf(tquat<T, P> const & x);
/// @}
} //namespace glm
#include "quaternion.inl"

801
glm/gtc/quaternion.inl Normal file
View file

@ -0,0 +1,801 @@
/// @ref gtc_quaternion
/// @file glm/gtc/quaternion.inl
#include "../trigonometric.hpp"
#include "../geometric.hpp"
#include "../exponential.hpp"
#include <limits>
namespace glm{
namespace detail
{
template<typename T, precision P, bool Aligned>
struct compute_dot<tquat<T, P>, T, Aligned>
{
static GLM_FUNC_QUALIFIER T call(tquat<T, P> const& a, tquat<T, P> const& b)
{
vec<4, T, P> tmp(a.x * b.x, a.y * b.y, a.z * b.z, a.w * b.w);
return (tmp.x + tmp.y) + (tmp.z + tmp.w);
}
};
template<typename T, precision P, bool Aligned>
struct compute_quat_add
{
static tquat<T, P> call(tquat<T, P> const& q, tquat<T, P> const& p)
{
return tquat<T, P>(q.w + p.w, q.x + p.x, q.y + p.y, q.z + p.z);
}
};
template<typename T, precision P, bool Aligned>
struct compute_quat_sub
{
static tquat<T, P> call(tquat<T, P> const& q, tquat<T, P> const& p)
{
return tquat<T, P>(q.w - p.w, q.x - p.x, q.y - p.y, q.z - p.z);
}
};
template<typename T, precision P, bool Aligned>
struct compute_quat_mul_scalar
{
static tquat<T, P> call(tquat<T, P> const& q, T s)
{
return tquat<T, P>(q.w * s, q.x * s, q.y * s, q.z * s);
}
};
template<typename T, precision P, bool Aligned>
struct compute_quat_div_scalar
{
static tquat<T, P> call(tquat<T, P> const& q, T s)
{
return tquat<T, P>(q.w / s, q.x / s, q.y / s, q.z / s);
}
};
template<typename T, precision P, bool Aligned>
struct compute_quat_mul_vec4
{
static vec<4, T, P> call(tquat<T, P> const & q, vec<4, T, P> const & v)
{
return vec<4, T, P>(q * vec<3, T, P>(v), v.w);
}
};
}//namespace detail
// -- Component accesses --
template<typename T, precision P>
GLM_FUNC_QUALIFIER T & tquat<T, P>::operator[](typename tquat<T, P>::length_type i)
{
assert(i >= 0 && i < this->length());
return (&x)[i];
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER T const & tquat<T, P>::operator[](typename tquat<T, P>::length_type i) const
{
assert(i >= 0 && i < this->length());
return (&x)[i];
}
// -- Implicit basic constructors --
# if !GLM_HAS_DEFAULTED_FUNCTIONS || !defined(GLM_FORCE_NO_CTOR_INIT)
template<typename T, precision P>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat()
# ifndef GLM_FORCE_NO_CTOR_INIT
: x(0), y(0), z(0), w(1)
# endif
{}
# endif
# if !GLM_HAS_DEFAULTED_FUNCTIONS
template<typename T, precision P>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(tquat<T, P> const & q)
: x(q.x), y(q.y), z(q.z), w(q.w)
{}
# endif//!GLM_HAS_DEFAULTED_FUNCTIONS
template<typename T, precision P>
template<precision Q>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(tquat<T, Q> const& q)
: x(q.x), y(q.y), z(q.z), w(q.w)
{}
// -- Explicit basic constructors --
template<typename T, precision P>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR_CTOR tquat<T, P>::tquat(ctor)
{}
template<typename T, precision P>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(T s, vec<3, T, P> const& v)
: x(v.x), y(v.y), z(v.z), w(s)
{}
template <typename T, precision P>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(T _w, T _x, T _y, T _z)
: x(_x), y(_y), z(_z), w(_w)
{}
// -- Conversion constructors --
template<typename T, precision P>
template<typename U, precision Q>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(tquat<U, Q> const& q)
: x(static_cast<T>(q.x))
, y(static_cast<T>(q.y))
, z(static_cast<T>(q.z))
, w(static_cast<T>(q.w))
{}
//template<typename valType>
//GLM_FUNC_QUALIFIER tquat<valType>::tquat
//(
// valType const & pitch,
// valType const & yaw,
// valType const & roll
//)
//{
// vec<3, valType> eulerAngle(pitch * valType(0.5), yaw * valType(0.5), roll * valType(0.5));
// vec<3, valType> c = glm::cos(eulerAngle * valType(0.5));
// vec<3, valType> s = glm::sin(eulerAngle * valType(0.5));
//
// this->w = c.x * c.y * c.z + s.x * s.y * s.z;
// this->x = s.x * c.y * c.z - c.x * s.y * s.z;
// this->y = c.x * s.y * c.z + s.x * c.y * s.z;
// this->z = c.x * c.y * s.z - s.x * s.y * c.z;
//}
template<typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P>::tquat(vec<3, T, P> const& u, vec<3, T, P> const& v)
{
vec<3, T, P> const LocalW(cross(u, v));
T Dot = detail::compute_dot<vec<3, T, P>, T, detail::is_aligned<P>::value>::call(u, v);
tquat<T, P> q(T(1) + Dot, LocalW.x, LocalW.y, LocalW.z);
*this = normalize(q);
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P>::tquat(vec<3, T, P> const& eulerAngle)
{
vec<3, T, P> c = glm::cos(eulerAngle * T(0.5));
vec<3, T, P> s = glm::sin(eulerAngle * T(0.5));
this->w = c.x * c.y * c.z + s.x * s.y * s.z;
this->x = s.x * c.y * c.z - c.x * s.y * s.z;
this->y = c.x * s.y * c.z + s.x * c.y * s.z;
this->z = c.x * c.y * s.z - s.x * s.y * c.z;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P>::tquat(mat<3, 3, T, P> const& m)
{
*this = quat_cast(m);
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P>::tquat(mat<4, 4, T, P> const& m)
{
*this = quat_cast(m);
}
# if GLM_HAS_EXPLICIT_CONVERSION_OPERATORS
template<typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P>::operator mat<3, 3, T, P>()
{
return mat3_cast(*this);
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P>::operator mat<4, 4, T, P>()
{
return mat4_cast(*this);
}
# endif//GLM_HAS_EXPLICIT_CONVERSION_OPERATORS
template<typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> conjugate(tquat<T, P> const& q)
{
return tquat<T, P>(q.w, -q.x, -q.y, -q.z);
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> inverse(tquat<T, P> const & q)
{
return conjugate(q) / dot(q, q);
}
// -- Unary arithmetic operators --
# if !GLM_HAS_DEFAULTED_FUNCTIONS
template<typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator=(tquat<T, P> const & q)
{
this->w = q.w;
this->x = q.x;
this->y = q.y;
this->z = q.z;
return *this;
}
# endif//!GLM_HAS_DEFAULTED_FUNCTIONS
template<typename T, precision P>
template<typename U>
GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator=(tquat<U, P> const & q)
{
this->w = static_cast<T>(q.w);
this->x = static_cast<T>(q.x);
this->y = static_cast<T>(q.y);
this->z = static_cast<T>(q.z);
return *this;
}
template<typename T, precision P>
template<typename U>
GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator+=(tquat<U, P> const& q)
{
return (*this = detail::compute_quat_add<T, P, detail::is_aligned<P>::value>::call(*this, tquat<T, P>(q)));
}
template<typename T, precision P>
template<typename U>
GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator-=(tquat<U, P> const& q)
{
return (*this = detail::compute_quat_sub<T, P, detail::is_aligned<P>::value>::call(*this, tquat<T, P>(q)));
}
template<typename T, precision P>
template<typename U>
GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator*=(tquat<U, P> const & r)
{
tquat<T, P> const p(*this);
tquat<T, P> const q(r);
this->w = p.w * q.w - p.x * q.x - p.y * q.y - p.z * q.z;
this->x = p.w * q.x + p.x * q.w + p.y * q.z - p.z * q.y;
this->y = p.w * q.y + p.y * q.w + p.z * q.x - p.x * q.z;
this->z = p.w * q.z + p.z * q.w + p.x * q.y - p.y * q.x;
return *this;
}
template<typename T, precision P>
template<typename U>
GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator*=(U s)
{
return (*this = detail::compute_quat_mul_scalar<T, P, detail::is_aligned<P>::value>::call(*this, static_cast<U>(s)));
}
template<typename T, precision P>
template<typename U>
GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator/=(U s)
{
return (*this = detail::compute_quat_div_scalar<T, P, detail::is_aligned<P>::value>::call(*this, static_cast<U>(s)));
}
// -- Unary bit operators --
template<typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> operator+(tquat<T, P> const & q)
{
return q;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> operator-(tquat<T, P> const & q)
{
return tquat<T, P>(-q.w, -q.x, -q.y, -q.z);
}
// -- Binary operators --
template<typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> operator+(tquat<T, P> const & q, tquat<T, P> const & p)
{
return tquat<T, P>(q) += p;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> operator*(tquat<T, P> const & q, tquat<T, P> const & p)
{
return tquat<T, P>(q) *= p;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER vec<3, T, P> operator*(tquat<T, P> const & q, vec<3, T, P> const & v)
{
vec<3, T, P> const QuatVector(q.x, q.y, q.z);
vec<3, T, P> const uv(glm::cross(QuatVector, v));
vec<3, T, P> const uuv(glm::cross(QuatVector, uv));
return v + ((uv * q.w) + uuv) * static_cast<T>(2);
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER vec<3, T, P> operator*(vec<3, T, P> const & v, tquat<T, P> const & q)
{
return glm::inverse(q) * v;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER vec<4, T, P> operator*(tquat<T, P> const& q, vec<4, T, P> const& v)
{
return detail::compute_quat_mul_vec4<T, P, detail::is_aligned<P>::value>::call(q, v);
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER vec<4, T, P> operator*(vec<4, T, P> const & v, tquat<T, P> const & q)
{
return glm::inverse(q) * v;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> operator*(tquat<T, P> const & q, T const & s)
{
return tquat<T, P>(
q.w * s, q.x * s, q.y * s, q.z * s);
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> operator*(T const & s, tquat<T, P> const & q)
{
return q * s;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> operator/(tquat<T, P> const & q, T const & s)
{
return tquat<T, P>(
q.w / s, q.x / s, q.y / s, q.z / s);
}
// -- Boolean operators --
template<typename T, precision P>
GLM_FUNC_QUALIFIER bool operator==(tquat<T, P> const & q1, tquat<T, P> const & q2)
{
return (q1.x == q2.x) && (q1.y == q2.y) && (q1.z == q2.z) && (q1.w == q2.w);
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER bool operator!=(tquat<T, P> const & q1, tquat<T, P> const & q2)
{
return (q1.x != q2.x) || (q1.y != q2.y) || (q1.z != q2.z) || (q1.w != q2.w);
}
// -- Operations --
template<typename T, precision P>
GLM_FUNC_QUALIFIER T length(tquat<T, P> const & q)
{
return glm::sqrt(dot(q, q));
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> normalize(tquat<T, P> const & q)
{
T len = length(q);
if(len <= T(0)) // Problem
return tquat<T, P>(1, 0, 0, 0);
T oneOverLen = T(1) / len;
return tquat<T, P>(q.w * oneOverLen, q.x * oneOverLen, q.y * oneOverLen, q.z * oneOverLen);
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> cross(tquat<T, P> const & q1, tquat<T, P> const & q2)
{
return tquat<T, P>(
q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z,
q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y,
q1.w * q2.y + q1.y * q2.w + q1.z * q2.x - q1.x * q2.z,
q1.w * q2.z + q1.z * q2.w + q1.x * q2.y - q1.y * q2.x);
}
/*
// (x * sin(1 - a) * angle / sin(angle)) + (y * sin(a) * angle / sin(angle))
template<typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> mix(tquat<T, P> const & x, tquat<T, P> const & y, T const & a)
{
if(a <= T(0)) return x;
if(a >= T(1)) return y;
float fCos = dot(x, y);
tquat<T, P> y2(y); //BUG!!! tquat<T, P> y2;
if(fCos < T(0))
{
y2 = -y;
fCos = -fCos;
}
//if(fCos > 1.0f) // problem
float k0, k1;
if(fCos > T(0.9999))
{
k0 = T(1) - a;
k1 = T(0) + a; //BUG!!! 1.0f + a;
}
else
{
T fSin = sqrt(T(1) - fCos * fCos);
T fAngle = atan(fSin, fCos);
T fOneOverSin = static_cast<T>(1) / fSin;
k0 = sin((T(1) - a) * fAngle) * fOneOverSin;
k1 = sin((T(0) + a) * fAngle) * fOneOverSin;
}
return tquat<T, P>(
k0 * x.w + k1 * y2.w,
k0 * x.x + k1 * y2.x,
k0 * x.y + k1 * y2.y,
k0 * x.z + k1 * y2.z);
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> mix2
(
tquat<T, P> const & x,
tquat<T, P> const & y,
T const & a
)
{
bool flip = false;
if(a <= static_cast<T>(0)) return x;
if(a >= static_cast<T>(1)) return y;
T cos_t = dot(x, y);
if(cos_t < T(0))
{
cos_t = -cos_t;
flip = true;
}
T alpha(0), beta(0);
if(T(1) - cos_t < 1e-7)
beta = static_cast<T>(1) - alpha;
else
{
T theta = acos(cos_t);
T sin_t = sin(theta);
beta = sin(theta * (T(1) - alpha)) / sin_t;
alpha = sin(alpha * theta) / sin_t;
}
if(flip)
alpha = -alpha;
return normalize(beta * x + alpha * y);
}
*/
template<typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> mix(tquat<T, P> const & x, tquat<T, P> const & y, T a)
{
T cosTheta = dot(x, y);
// Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator
if(cosTheta > T(1) - epsilon<T>())
{
// Linear interpolation
return tquat<T, P>(
mix(x.w, y.w, a),
mix(x.x, y.x, a),
mix(x.y, y.y, a),
mix(x.z, y.z, a));
}
else
{
// Essential Mathematics, page 467
T angle = acos(cosTheta);
return (sin((T(1) - a) * angle) * x + sin(a * angle) * y) / sin(angle);
}
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> lerp(tquat<T, P> const & x, tquat<T, P> const & y, T a)
{
// Lerp is only defined in [0, 1]
assert(a >= static_cast<T>(0));
assert(a <= static_cast<T>(1));
return x * (T(1) - a) + (y * a);
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> slerp(tquat<T, P> const & x, tquat<T, P> const & y, T a)
{
tquat<T, P> z = y;
T cosTheta = dot(x, y);
// If cosTheta < 0, the interpolation will take the long way around the sphere.
// To fix this, one quat must be negated.
if (cosTheta < T(0))
{
z = -y;
cosTheta = -cosTheta;
}
// Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator
if(cosTheta > T(1) - epsilon<T>())
{
// Linear interpolation
return tquat<T, P>(
mix(x.w, z.w, a),
mix(x.x, z.x, a),
mix(x.y, z.y, a),
mix(x.z, z.z, a));
}
else
{
// Essential Mathematics, page 467
T angle = acos(cosTheta);
return (sin((T(1) - a) * angle) * x + sin(a * angle) * z) / sin(angle);
}
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> rotate(tquat<T, P> const & q, T const & angle, vec<3, T, P> const & v)
{
vec<3, T, P> Tmp = v;
// Axis of rotation must be normalised
T len = glm::length(Tmp);
if(abs(len - T(1)) > T(0.001))
{
T oneOverLen = static_cast<T>(1) / len;
Tmp.x *= oneOverLen;
Tmp.y *= oneOverLen;
Tmp.z *= oneOverLen;
}
T const AngleRad(angle);
T const Sin = sin(AngleRad * T(0.5));
return q * tquat<T, P>(cos(AngleRad * T(0.5)), Tmp.x * Sin, Tmp.y * Sin, Tmp.z * Sin);
//return gtc::quaternion::cross(q, tquat<T, P>(cos(AngleRad * T(0.5)), Tmp.x * fSin, Tmp.y * fSin, Tmp.z * fSin));
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER vec<3, T, P> eulerAngles(tquat<T, P> const & x)
{
return vec<3, T, P>(pitch(x), yaw(x), roll(x));
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER T roll(tquat<T, P> const & q)
{
return T(atan(T(2) * (q.x * q.y + q.w * q.z), q.w * q.w + q.x * q.x - q.y * q.y - q.z * q.z));
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER T pitch(tquat<T, P> const & q)
{
//return T(atan(T(2) * (q.y * q.z + q.w * q.x), q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z));
const T y = T(2) * (q.y * q.z + q.w * q.x);
const T x = q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z;
if(y == T(0) && x == T(0)) //avoid atan2(0,0) - handle singularity - Matiis
return T(T(2)*atan(q.x,q.w));
return T(atan(y,x));
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER T yaw(tquat<T, P> const & q)
{
return asin(clamp(T(-2) * (q.x * q.z - q.w * q.y), T(-1), T(1)));
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER mat<3, 3, T, P> mat3_cast(tquat<T, P> const & q)
{
mat<3, 3, T, P> Result(T(1));
T qxx(q.x * q.x);
T qyy(q.y * q.y);
T qzz(q.z * q.z);
T qxz(q.x * q.z);
T qxy(q.x * q.y);
T qyz(q.y * q.z);
T qwx(q.w * q.x);
T qwy(q.w * q.y);
T qwz(q.w * q.z);
Result[0][0] = T(1) - T(2) * (qyy + qzz);
Result[0][1] = T(2) * (qxy + qwz);
Result[0][2] = T(2) * (qxz - qwy);
Result[1][0] = T(2) * (qxy - qwz);
Result[1][1] = T(1) - T(2) * (qxx + qzz);
Result[1][2] = T(2) * (qyz + qwx);
Result[2][0] = T(2) * (qxz + qwy);
Result[2][1] = T(2) * (qyz - qwx);
Result[2][2] = T(1) - T(2) * (qxx + qyy);
return Result;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER mat<4, 4, T, P> mat4_cast(tquat<T, P> const & q)
{
return mat<4, 4, T, P>(mat3_cast(q));
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> quat_cast(mat<3, 3, T, P> const & m)
{
T fourXSquaredMinus1 = m[0][0] - m[1][1] - m[2][2];
T fourYSquaredMinus1 = m[1][1] - m[0][0] - m[2][2];
T fourZSquaredMinus1 = m[2][2] - m[0][0] - m[1][1];
T fourWSquaredMinus1 = m[0][0] + m[1][1] + m[2][2];
int biggestIndex = 0;
T fourBiggestSquaredMinus1 = fourWSquaredMinus1;
if(fourXSquaredMinus1 > fourBiggestSquaredMinus1)
{
fourBiggestSquaredMinus1 = fourXSquaredMinus1;
biggestIndex = 1;
}
if(fourYSquaredMinus1 > fourBiggestSquaredMinus1)
{
fourBiggestSquaredMinus1 = fourYSquaredMinus1;
biggestIndex = 2;
}
if(fourZSquaredMinus1 > fourBiggestSquaredMinus1)
{
fourBiggestSquaredMinus1 = fourZSquaredMinus1;
biggestIndex = 3;
}
T biggestVal = sqrt(fourBiggestSquaredMinus1 + T(1)) * T(0.5);
T mult = static_cast<T>(0.25) / biggestVal;
tquat<T, P> Result(uninitialize);
switch(biggestIndex)
{
case 0:
Result.w = biggestVal;
Result.x = (m[1][2] - m[2][1]) * mult;
Result.y = (m[2][0] - m[0][2]) * mult;
Result.z = (m[0][1] - m[1][0]) * mult;
break;
case 1:
Result.w = (m[1][2] - m[2][1]) * mult;
Result.x = biggestVal;
Result.y = (m[0][1] + m[1][0]) * mult;
Result.z = (m[2][0] + m[0][2]) * mult;
break;
case 2:
Result.w = (m[2][0] - m[0][2]) * mult;
Result.x = (m[0][1] + m[1][0]) * mult;
Result.y = biggestVal;
Result.z = (m[1][2] + m[2][1]) * mult;
break;
case 3:
Result.w = (m[0][1] - m[1][0]) * mult;
Result.x = (m[2][0] + m[0][2]) * mult;
Result.y = (m[1][2] + m[2][1]) * mult;
Result.z = biggestVal;
break;
default: // Silence a -Wswitch-default warning in GCC. Should never actually get here. Assert is just for sanity.
assert(false);
break;
}
return Result;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> quat_cast(mat<4, 4, T, P> const & m4)
{
return quat_cast(mat<3, 3, T, P>(m4));
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER T angle(tquat<T, P> const & x)
{
return acos(x.w) * T(2);
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER vec<3, T, P> axis(tquat<T, P> const & x)
{
T tmp1 = static_cast<T>(1) - x.w * x.w;
if(tmp1 <= static_cast<T>(0))
return vec<3, T, P>(0, 0, 1);
T tmp2 = static_cast<T>(1) / sqrt(tmp1);
return vec<3, T, P>(x.x * tmp2, x.y * tmp2, x.z * tmp2);
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> angleAxis(T const & angle, vec<3, T, P> const & v)
{
tquat<T, P> Result(uninitialize);
T const a(angle);
T const s = glm::sin(a * static_cast<T>(0.5));
Result.w = glm::cos(a * static_cast<T>(0.5));
Result.x = v.x * s;
Result.y = v.y * s;
Result.z = v.z * s;
return Result;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER vec<4, bool, P> lessThan(tquat<T, P> const & x, tquat<T, P> const & y)
{
vec<4, bool, P> Result(uninitialize);
for(length_t i = 0; i < x.length(); ++i)
Result[i] = x[i] < y[i];
return Result;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER vec<4, bool, P> lessThanEqual(tquat<T, P> const & x, tquat<T, P> const & y)
{
vec<4, bool, P> Result(uninitialize);
for(length_t i = 0; i < x.length(); ++i)
Result[i] = x[i] <= y[i];
return Result;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER vec<4, bool, P> greaterThan(tquat<T, P> const & x, tquat<T, P> const & y)
{
vec<4, bool, P> Result(uninitialize);
for(length_t i = 0; i < x.length(); ++i)
Result[i] = x[i] > y[i];
return Result;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER vec<4, bool, P> greaterThanEqual(tquat<T, P> const & x, tquat<T, P> const & y)
{
vec<4, bool, P> Result(uninitialize);
for(length_t i = 0; i < x.length(); ++i)
Result[i] = x[i] >= y[i];
return Result;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER vec<4, bool, P> equal(tquat<T, P> const & x, tquat<T, P> const & y)
{
vec<4, bool, P> Result(uninitialize);
for(length_t i = 0; i < x.length(); ++i)
Result[i] = x[i] == y[i];
return Result;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER vec<4, bool, P> notEqual(tquat<T, P> const & x, tquat<T, P> const & y)
{
vec<4, bool, P> Result(uninitialize);
for(length_t i = 0; i < x.length(); ++i)
Result[i] = x[i] != y[i];
return Result;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER vec<4, bool, P> isnan(tquat<T, P> const& q)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'isnan' only accept floating-point inputs");
return vec<4, bool, P>(isnan(q.x), isnan(q.y), isnan(q.z), isnan(q.w));
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER vec<4, bool, P> isinf(tquat<T, P> const& q)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'isinf' only accept floating-point inputs");
return vec<4, bool, P>(isinf(q.x), isinf(q.y), isinf(q.z), isinf(q.w));
}
}//namespace glm
#if GLM_ARCH != GLM_ARCH_PURE && GLM_HAS_ALIGNED_TYPE
# include "quaternion_simd.inl"
#endif

198
glm/gtc/quaternion_simd.inl Normal file
View file

@ -0,0 +1,198 @@
/// @ref core
/// @file glm/gtc/quaternion_simd.inl
#if GLM_ARCH & GLM_ARCH_SSE2_BIT
namespace glm{
namespace detail
{
/*
template<precision P>
struct compute_quat_mul<float, P, true>
{
static tquat<float, P> call(tquat<float, P> const& q1, tquat<float, P> const& q2)
{
// SSE2 STATS: 11 shuffle, 8 mul, 8 add
// SSE4 STATS: 3 shuffle, 4 mul, 4 dpps
__m128 const mul0 = _mm_mul_ps(q1.Data, _mm_shuffle_ps(q2.Data, q2.Data, _MM_SHUFFLE(0, 1, 2, 3)));
__m128 const mul1 = _mm_mul_ps(q1.Data, _mm_shuffle_ps(q2.Data, q2.Data, _MM_SHUFFLE(1, 0, 3, 2)));
__m128 const mul2 = _mm_mul_ps(q1.Data, _mm_shuffle_ps(q2.Data, q2.Data, _MM_SHUFFLE(2, 3, 0, 1)));
__m128 const mul3 = _mm_mul_ps(q1.Data, q2.Data);
# if GLM_ARCH & GLM_ARCH_SSE41_BIT
__m128 const add0 = _mm_dp_ps(mul0, _mm_set_ps(1.0f, -1.0f, 1.0f, 1.0f), 0xff);
__m128 const add1 = _mm_dp_ps(mul1, _mm_set_ps(1.0f, 1.0f, 1.0f, -1.0f), 0xff);
__m128 const add2 = _mm_dp_ps(mul2, _mm_set_ps(1.0f, 1.0f, -1.0f, 1.0f), 0xff);
__m128 const add3 = _mm_dp_ps(mul3, _mm_set_ps(1.0f, -1.0f, -1.0f, -1.0f), 0xff);
# else
__m128 const mul4 = _mm_mul_ps(mul0, _mm_set_ps(1.0f, -1.0f, 1.0f, 1.0f));
__m128 const add0 = _mm_add_ps(mul0, _mm_movehl_ps(mul4, mul4));
__m128 const add4 = _mm_add_ss(add0, _mm_shuffle_ps(add0, add0, 1));
__m128 const mul5 = _mm_mul_ps(mul1, _mm_set_ps(1.0f, 1.0f, 1.0f, -1.0f));
__m128 const add1 = _mm_add_ps(mul1, _mm_movehl_ps(mul5, mul5));
__m128 const add5 = _mm_add_ss(add1, _mm_shuffle_ps(add1, add1, 1));
__m128 const mul6 = _mm_mul_ps(mul2, _mm_set_ps(1.0f, 1.0f, -1.0f, 1.0f));
__m128 const add2 = _mm_add_ps(mul6, _mm_movehl_ps(mul6, mul6));
__m128 const add6 = _mm_add_ss(add2, _mm_shuffle_ps(add2, add2, 1));
__m128 const mul7 = _mm_mul_ps(mul3, _mm_set_ps(1.0f, -1.0f, -1.0f, -1.0f));
__m128 const add3 = _mm_add_ps(mul3, _mm_movehl_ps(mul7, mul7));
__m128 const add7 = _mm_add_ss(add3, _mm_shuffle_ps(add3, add3, 1));
#endif
// This SIMD code is a politically correct way of doing this, but in every test I've tried it has been slower than
// the final code below. I'll keep this here for reference - maybe somebody else can do something better...
//
//__m128 xxyy = _mm_shuffle_ps(add4, add5, _MM_SHUFFLE(0, 0, 0, 0));
//__m128 zzww = _mm_shuffle_ps(add6, add7, _MM_SHUFFLE(0, 0, 0, 0));
//
//return _mm_shuffle_ps(xxyy, zzww, _MM_SHUFFLE(2, 0, 2, 0));
tquat<float, P> Result(uninitialize);
_mm_store_ss(&Result.x, add4);
_mm_store_ss(&Result.y, add5);
_mm_store_ss(&Result.z, add6);
_mm_store_ss(&Result.w, add7);
return Result;
}
};
*/
template<precision P>
struct compute_dot<tquat<float, P>, float, true>
{
static GLM_FUNC_QUALIFIER float call(tquat<float, P> const& x, tquat<float, P> const& y)
{
return _mm_cvtss_f32(glm_vec1_dot(x.data, y.data));
}
};
template<precision P>
struct compute_quat_add<float, P, true>
{
static tquat<float, P> call(tquat<float, P> const& q, tquat<float, P> const& p)
{
tquat<float, P> Result(uninitialize);
Result.data = _mm_add_ps(q.data, p.data);
return Result;
}
};
# if GLM_ARCH & GLM_ARCH_AVX_BIT
template<precision P>
struct compute_quat_add<double, P, true>
{
static tquat<double, P> call(tquat<double, P> const & a, tquat<double, P> const & b)
{
tquat<double, P> Result(uninitialize);
Result.data = _mm256_add_pd(a.data, b.data);
return Result;
}
};
# endif
template<precision P>
struct compute_quat_sub<float, P, true>
{
static tquat<float, P> call(tquat<float, P> const& q, tquat<float, P> const& p)
{
vec<4, float, P> Result(uninitialize);
Result.data = _mm_sub_ps(q.data, p.data);
return Result;
}
};
# if GLM_ARCH & GLM_ARCH_AVX_BIT
template<precision P>
struct compute_quat_sub<double, P, true>
{
static tquat<double, P> call(tquat<double, P> const & a, tquat<double, P> const & b)
{
tquat<double, P> Result(uninitialize);
Result.data = _mm256_sub_pd(a.data, b.data);
return Result;
}
};
# endif
template<precision P>
struct compute_quat_mul_scalar<float, P, true>
{
static tquat<float, P> call(tquat<float, P> const& q, float s)
{
vec<4, float, P> Result(uninitialize);
Result.data = _mm_mul_ps(q.data, _mm_set_ps1(s));
return Result;
}
};
# if GLM_ARCH & GLM_ARCH_AVX_BIT
template<precision P>
struct compute_quat_mul_scalar<double, P, true>
{
static tquat<double, P> call(tquat<double, P> const& q, double s)
{
tquat<double, P> Result(uninitialize);
Result.data = _mm256_mul_pd(q.data, _mm_set_ps1(s));
return Result;
}
};
# endif
template<precision P>
struct compute_quat_div_scalar<float, P, true>
{
static tquat<float, P> call(tquat<float, P> const& q, float s)
{
vec<4, float, P> Result(uninitialize);
Result.data = _mm_div_ps(q.data, _mm_set_ps1(s));
return Result;
}
};
# if GLM_ARCH & GLM_ARCH_AVX_BIT
template<precision P>
struct compute_quat_div_scalar<double, P, true>
{
static tquat<double, P> call(tquat<double, P> const& q, double s)
{
tquat<double, P> Result(uninitialize);
Result.data = _mm256_div_pd(q.data, _mm_set_ps1(s));
return Result;
}
};
# endif
template<precision P>
struct compute_quat_mul_vec4<float, P, true>
{
static vec<4, float, P> call(tquat<float, P> const& q, vec<4, float, P> const& v)
{
__m128 const q_wwww = _mm_shuffle_ps(q.data, q.data, _MM_SHUFFLE(3, 3, 3, 3));
__m128 const q_swp0 = _mm_shuffle_ps(q.data, q.data, _MM_SHUFFLE(3, 0, 2, 1));
__m128 const q_swp1 = _mm_shuffle_ps(q.data, q.data, _MM_SHUFFLE(3, 1, 0, 2));
__m128 const v_swp0 = _mm_shuffle_ps(v.data, v.data, _MM_SHUFFLE(3, 0, 2, 1));
__m128 const v_swp1 = _mm_shuffle_ps(v.data, v.data, _MM_SHUFFLE(3, 1, 0, 2));
__m128 uv = _mm_sub_ps(_mm_mul_ps(q_swp0, v_swp1), _mm_mul_ps(q_swp1, v_swp0));
__m128 uv_swp0 = _mm_shuffle_ps(uv, uv, _MM_SHUFFLE(3, 0, 2, 1));
__m128 uv_swp1 = _mm_shuffle_ps(uv, uv, _MM_SHUFFLE(3, 1, 0, 2));
__m128 uuv = _mm_sub_ps(_mm_mul_ps(q_swp0, uv_swp1), _mm_mul_ps(q_swp1, uv_swp0));
__m128 const two = _mm_set1_ps(2.0f);
uv = _mm_mul_ps(uv, _mm_mul_ps(q_wwww, two));
uuv = _mm_mul_ps(uuv, two);
vec<4, float, P> Result(uninitialize);
Result.data = _mm_add_ps(v.Data, _mm_add_ps(uv, uuv));
return Result;
}
};
}//namespace detail
}//namespace glm
#endif//GLM_ARCH & GLM_ARCH_SSE2_BIT

97
glm/gtc/random.hpp Normal file
View file

@ -0,0 +1,97 @@
/// @ref gtc_random
/// @file glm/gtc/random.hpp
///
/// @see core (dependence)
/// @see gtx_random (extended)
///
/// @defgroup gtc_random GLM_GTC_random
/// @ingroup gtc
///
/// @brief Generate random number from various distribution methods.
///
/// <glm/gtc/random.hpp> need to be included to use these functionalities.
#pragma once
// Dependency:
#include "../vec2.hpp"
#include "../vec3.hpp"
#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
# pragma message("GLM: GLM_GTC_random extension included")
#endif
namespace glm
{
/// @addtogroup gtc_random
/// @{
/// Generate random numbers in the interval [Min, Max], according a linear distribution
///
/// @param Min
/// @param Max
/// @tparam genType Value type. Currently supported: float or double scalars.
/// @see gtc_random
template<typename genTYpe>
GLM_FUNC_DECL genTYpe linearRand(
genTYpe Min,
genTYpe Max);
/// Generate random numbers in the interval [Min, Max], according a linear distribution
///
/// @param Min
/// @param Max
/// @tparam T Value type. Currently supported: float or double.
/// @tparam vecType A vertor type: tvec1, tvec2, tvec3, tvec4 or compatible
/// @see gtc_random
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_DECL vecType<L, T, P> linearRand(
vecType<L, T, P> const& Min,
vecType<L, T, P> const& Max);
/// Generate random numbers in the interval [Min, Max], according a gaussian distribution
///
/// @param Mean
/// @param Deviation
/// @see gtc_random
template<typename genType>
GLM_FUNC_DECL genType gaussRand(
genType Mean,
genType Deviation);
/// Generate a random 2D vector which coordinates are regulary distributed on a circle of a given radius
///
/// @param Radius
/// @see gtc_random
template<typename T>
GLM_FUNC_DECL vec<2, T, defaultp> circularRand(
T Radius);
/// Generate a random 3D vector which coordinates are regulary distributed on a sphere of a given radius
///
/// @param Radius
/// @see gtc_random
template<typename T>
GLM_FUNC_DECL vec<3, T, defaultp> sphericalRand(
T Radius);
/// Generate a random 2D vector which coordinates are regulary distributed within the area of a disk of a given radius
///
/// @param Radius
/// @see gtc_random
template<typename T>
GLM_FUNC_DECL vec<2, T, defaultp> diskRand(
T Radius);
/// Generate a random 3D vector which coordinates are regulary distributed within the volume of a ball of a given radius
///
/// @param Radius
/// @see gtc_random
template<typename T>
GLM_FUNC_DECL vec<3, T, defaultp> ballRand(
T Radius);
/// @}
}//namespace glm
#include "random.inl"

350
glm/gtc/random.inl Normal file
View file

@ -0,0 +1,350 @@
/// @ref gtc_random
/// @file glm/gtc/random.inl
#include "../geometric.hpp"
#include "../exponential.hpp"
#include <cstdlib>
#include <ctime>
#include <cassert>
namespace glm{
namespace detail
{
template<length_t L, typename T, precision P, template<int, class, precision> class vecType>
struct compute_rand
{
GLM_FUNC_QUALIFIER static vecType<L, T, P> call();
};
template<precision P>
struct compute_rand<1, uint8, P, vec>
{
GLM_FUNC_QUALIFIER static vec<1, uint8, P> call()
{
return vec<1, uint8, P>(
std::rand() % std::numeric_limits<uint8>::max());
}
};
template<precision P>
struct compute_rand<2, uint8, P, vec>
{
GLM_FUNC_QUALIFIER static vec<2, uint8, P> call()
{
return vec<2, uint8, P>(
std::rand() % std::numeric_limits<uint8>::max(),
std::rand() % std::numeric_limits<uint8>::max());
}
};
template<precision P>
struct compute_rand<3, uint8, P, vec>
{
GLM_FUNC_QUALIFIER static vec<3, uint8, P> call()
{
return vec<3, uint8, P>(
std::rand() % std::numeric_limits<uint8>::max(),
std::rand() % std::numeric_limits<uint8>::max(),
std::rand() % std::numeric_limits<uint8>::max());
}
};
template<precision P>
struct compute_rand<4, uint8, P, vec>
{
GLM_FUNC_QUALIFIER static vec<4, uint8, P> call()
{
return vec<4, uint8, P>(
std::rand() % std::numeric_limits<uint8>::max(),
std::rand() % std::numeric_limits<uint8>::max(),
std::rand() % std::numeric_limits<uint8>::max(),
std::rand() % std::numeric_limits<uint8>::max());
}
};
template<length_t L, precision P, template<length_t, typename, precision> class vecType>
struct compute_rand<L, uint16, P, vecType>
{
GLM_FUNC_QUALIFIER static vecType<L, uint16, P> call()
{
return
(vecType<L, uint16, P>(compute_rand<L, uint8, P, vecType>::call()) << static_cast<uint16>(8)) |
(vecType<L, uint16, P>(compute_rand<L, uint8, P, vecType>::call()) << static_cast<uint16>(0));
}
};
template<length_t L, precision P, template<length_t, typename, precision> class vecType>
struct compute_rand<L, uint32, P, vecType>
{
GLM_FUNC_QUALIFIER static vecType<L, uint32, P> call()
{
return
(vecType<L, uint32, P>(compute_rand<L, uint16, P, vecType>::call()) << static_cast<uint32>(16)) |
(vecType<L, uint32, P>(compute_rand<L, uint16, P, vecType>::call()) << static_cast<uint32>(0));
}
};
template<length_t L, precision P, template<length_t, typename, precision> class vecType>
struct compute_rand<L, uint64, P, vecType>
{
GLM_FUNC_QUALIFIER static vecType<L, uint64, P> call()
{
return
(vecType<L, uint64, P>(compute_rand<L, uint32, P, vecType>::call()) << static_cast<uint64>(32)) |
(vecType<L, uint64, P>(compute_rand<L, uint32, P, vecType>::call()) << static_cast<uint64>(0));
}
};
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
struct compute_linearRand
{
GLM_FUNC_QUALIFIER static vecType<L, T, P> call(vecType<L, T, P> const & Min, vecType<L, T, P> const & Max);
};
template<length_t L, precision P, template<length_t, typename, precision> class vecType>
struct compute_linearRand<L, int8, P, vecType>
{
GLM_FUNC_QUALIFIER static vecType<L, int8, P> call(vecType<L, int8, P> const & Min, vecType<L, int8, P> const & Max)
{
return (vecType<L, int8, P>(compute_rand<L, uint8, P, vecType>::call() % vecType<L, uint8, P>(Max + static_cast<int8>(1) - Min))) + Min;
}
};
template<length_t L, precision P, template<length_t, typename, precision> class vecType>
struct compute_linearRand<L, uint8, P, vecType>
{
GLM_FUNC_QUALIFIER static vecType<L, uint8, P> call(vecType<L, uint8, P> const & Min, vecType<L, uint8, P> const & Max)
{
return (compute_rand<L, uint8, P, vecType>::call() % (Max + static_cast<uint8>(1) - Min)) + Min;
}
};
template<length_t L, precision P, template<length_t, typename, precision> class vecType>
struct compute_linearRand<L, int16, P, vecType>
{
GLM_FUNC_QUALIFIER static vecType<L, int16, P> call(vecType<L, int16, P> const & Min, vecType<L, int16, P> const & Max)
{
return (vecType<L, int16, P>(compute_rand<L, uint16, P, vecType>::call() % vecType<L, uint16, P>(Max + static_cast<int16>(1) - Min))) + Min;
}
};
template<length_t L, precision P, template<length_t, typename, precision> class vecType>
struct compute_linearRand<L, uint16, P, vecType>
{
GLM_FUNC_QUALIFIER static vecType<L, uint16, P> call(vecType<L, uint16, P> const & Min, vecType<L, uint16, P> const & Max)
{
return (compute_rand<L, uint16, P, vecType>::call() % (Max + static_cast<uint16>(1) - Min)) + Min;
}
};
template<length_t L, precision P, template<length_t, typename, precision> class vecType>
struct compute_linearRand<L, int32, P, vecType>
{
GLM_FUNC_QUALIFIER static vecType<L, int32, P> call(vecType<L, int32, P> const & Min, vecType<L, int32, P> const & Max)
{
return (vecType<L, int32, P>(compute_rand<L, uint32, P, vecType>::call() % vecType<L, uint32, P>(Max + static_cast<int32>(1) - Min))) + Min;
}
};
template<length_t L, precision P, template<length_t, typename, precision> class vecType>
struct compute_linearRand<L, uint32, P, vecType>
{
GLM_FUNC_QUALIFIER static vecType<L, uint32, P> call(vecType<L, uint32, P> const & Min, vecType<L, uint32, P> const & Max)
{
return (compute_rand<L, uint32, P, vecType>::call() % (Max + static_cast<uint32>(1) - Min)) + Min;
}
};
template<length_t L, precision P, template<length_t, typename, precision> class vecType>
struct compute_linearRand<L, int64, P, vecType>
{
GLM_FUNC_QUALIFIER static vecType<L, int64, P> call(vecType<L, int64, P> const & Min, vecType<L, int64, P> const & Max)
{
return (vecType<L, int64, P>(compute_rand<L, uint64, P, vecType>::call() % vecType<L, uint64, P>(Max + static_cast<int64>(1) - Min))) + Min;
}
};
template<length_t L, precision P, template<length_t, typename, precision> class vecType>
struct compute_linearRand<L, uint64, P, vecType>
{
GLM_FUNC_QUALIFIER static vecType<L, uint64, P> call(vecType<L, uint64, P> const & Min, vecType<L, uint64, P> const & Max)
{
return (compute_rand<L, uint64, P, vecType>::call() % (Max + static_cast<uint64>(1) - Min)) + Min;
}
};
template<length_t L, template<length_t, typename, precision> class vecType>
struct compute_linearRand<L, float, lowp, vecType>
{
GLM_FUNC_QUALIFIER static vecType<L, float, lowp> call(vecType<L, float, lowp> const & Min, vecType<L, float, lowp> const & Max)
{
return vecType<L, float, lowp>(compute_rand<L, uint8, lowp, vecType>::call()) / static_cast<float>(std::numeric_limits<uint8>::max()) * (Max - Min) + Min;
}
};
template<length_t L, template<length_t, typename, precision> class vecType>
struct compute_linearRand<L, float, mediump, vecType>
{
GLM_FUNC_QUALIFIER static vecType<L, float, mediump> call(vecType<L, float, mediump> const & Min, vecType<L, float, mediump> const & Max)
{
return vecType<L, float, mediump>(compute_rand<L, uint16, mediump, vecType>::call()) / static_cast<float>(std::numeric_limits<uint16>::max()) * (Max - Min) + Min;
}
};
template<length_t L, template<length_t, typename, precision> class vecType>
struct compute_linearRand<L, float, highp, vecType>
{
GLM_FUNC_QUALIFIER static vecType<L, float, highp> call(vecType<L, float, highp> const & Min, vecType<L, float, highp> const & Max)
{
return vecType<L, float, highp>(compute_rand<L, uint32, highp, vecType>::call()) / static_cast<float>(std::numeric_limits<uint32>::max()) * (Max - Min) + Min;
}
};
template<length_t L, template<length_t, typename, precision> class vecType>
struct compute_linearRand<L, double, lowp, vecType>
{
GLM_FUNC_QUALIFIER static vecType<L, double, lowp> call(vecType<L, double, lowp> const & Min, vecType<L, double, lowp> const & Max)
{
return vecType<L, double, lowp>(compute_rand<L, uint16, lowp, vecType>::call()) / static_cast<double>(std::numeric_limits<uint16>::max()) * (Max - Min) + Min;
}
};
template<length_t L, template<length_t, typename, precision> class vecType>
struct compute_linearRand<L, double, mediump, vecType>
{
GLM_FUNC_QUALIFIER static vecType<L, double, mediump> call(vecType<L, double, mediump> const & Min, vecType<L, double, mediump> const & Max)
{
return vecType<L, double, mediump>(compute_rand<L, uint32, mediump, vecType>::call()) / static_cast<double>(std::numeric_limits<uint32>::max()) * (Max - Min) + Min;
}
};
template<length_t L, template<length_t, typename, precision> class vecType>
struct compute_linearRand<L, double, highp, vecType>
{
GLM_FUNC_QUALIFIER static vecType<L, double, highp> call(vecType<L, double, highp> const & Min, vecType<L, double, highp> const & Max)
{
return vecType<L, double, highp>(compute_rand<L, uint64, highp, vecType>::call()) / static_cast<double>(std::numeric_limits<uint64>::max()) * (Max - Min) + Min;
}
};
template<length_t L, template<length_t, typename, precision> class vecType>
struct compute_linearRand<L, long double, lowp, vecType>
{
GLM_FUNC_QUALIFIER static vecType<L, long double, lowp> call(vecType<L, long double, lowp> const & Min, vecType<L, long double, lowp> const & Max)
{
return vecType<L, long double, lowp>(compute_rand<L, uint32, lowp, vecType>::call()) / static_cast<long double>(std::numeric_limits<uint32>::max()) * (Max - Min) + Min;
}
};
template<length_t L, template<length_t, typename, precision> class vecType>
struct compute_linearRand<L, long double, mediump, vecType>
{
GLM_FUNC_QUALIFIER static vecType<L, long double, mediump> call(vecType<L, long double, mediump> const & Min, vecType<L, long double, mediump> const & Max)
{
return vecType<L, long double, mediump>(compute_rand<L, uint64, mediump, vecType>::call()) / static_cast<long double>(std::numeric_limits<uint64>::max()) * (Max - Min) + Min;
}
};
template<length_t L, template<length_t, typename, precision> class vecType>
struct compute_linearRand<L, long double, highp, vecType>
{
GLM_FUNC_QUALIFIER static vecType<L, long double, highp> call(vecType<L, long double, highp> const & Min, vecType<L, long double, highp> const & Max)
{
return vecType<L, long double, highp>(compute_rand<L, uint64, highp, vecType>::call()) / static_cast<long double>(std::numeric_limits<uint64>::max()) * (Max - Min) + Min;
}
};
}//namespace detail
template<typename genType>
GLM_FUNC_QUALIFIER genType linearRand(genType Min, genType Max)
{
return detail::compute_linearRand<1, genType, highp, vec>::call(
vec<1, genType, highp>(Min),
vec<1, genType, highp>(Max)).x;
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, T, P> linearRand(vecType<L, T, P> const & Min, vecType<L, T, P> const & Max)
{
return detail::compute_linearRand<L, T, P, vecType>::call(Min, Max);
}
template<typename genType>
GLM_FUNC_QUALIFIER genType gaussRand(genType Mean, genType Deviation)
{
genType w, x1, x2;
do
{
x1 = linearRand(genType(-1), genType(1));
x2 = linearRand(genType(-1), genType(1));
w = x1 * x1 + x2 * x2;
} while(w > genType(1));
return x2 * Deviation * Deviation * sqrt((genType(-2) * log(w)) / w) + Mean;
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, T, P> gaussRand(vecType<L, T, P> const & Mean, vecType<L, T, P> const & Deviation)
{
return detail::functor2<L, T, P>::call(gaussRand, Mean, Deviation);
}
template<typename T>
GLM_FUNC_QUALIFIER vec<2, T, defaultp> diskRand(T Radius)
{
vec<2, T, defaultp> Result(T(0));
T LenRadius(T(0));
do
{
Result = linearRand(
vec<2, T, defaultp>(-Radius),
vec<2, T, defaultp>(Radius));
LenRadius = length(Result);
}
while(LenRadius > Radius);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER vec<3, T, defaultp> ballRand(T Radius)
{
vec<3, T, defaultp> Result(T(0));
T LenRadius(T(0));
do
{
Result = linearRand(
vec<3, T, defaultp>(-Radius),
vec<3, T, defaultp>(Radius));
LenRadius = length(Result);
}
while(LenRadius > Radius);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER vec<2, T, defaultp> circularRand(T Radius)
{
T a = linearRand(T(0), T(6.283185307179586476925286766559f));
return vec<2, T, defaultp>(cos(a), sin(a)) * Radius;
}
template<typename T>
GLM_FUNC_QUALIFIER vec<3, T, defaultp> sphericalRand(T Radius)
{
T z = linearRand(T(-1), T(1));
T a = linearRand(T(0), T(6.283185307179586476925286766559f));
T r = sqrt(T(1) - z * z);
T x = r * cos(a);
T y = r * sin(a);
return vec<3, T, defaultp>(x, y, z) * Radius;
}
}//namespace glm

135
glm/gtc/reciprocal.hpp Normal file
View file

@ -0,0 +1,135 @@
/// @ref gtc_reciprocal
/// @file glm/gtc/reciprocal.hpp
///
/// @see core (dependence)
///
/// @defgroup gtc_reciprocal GLM_GTC_reciprocal
/// @ingroup gtc
///
/// @brief Define secant, cosecant and cotangent functions.
///
/// <glm/gtc/reciprocal.hpp> need to be included to use these features.
#pragma once
// Dependencies
#include "../detail/setup.hpp"
#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
# pragma message("GLM: GLM_GTC_reciprocal extension included")
#endif
namespace glm
{
/// @addtogroup gtc_reciprocal
/// @{
/// Secant function.
/// hypotenuse / adjacent or 1 / cos(x)
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see gtc_reciprocal
template<typename genType>
GLM_FUNC_DECL genType sec(genType angle);
/// Cosecant function.
/// hypotenuse / opposite or 1 / sin(x)
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see gtc_reciprocal
template<typename genType>
GLM_FUNC_DECL genType csc(genType angle);
/// Cotangent function.
/// adjacent / opposite or 1 / tan(x)
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see gtc_reciprocal
template<typename genType>
GLM_FUNC_DECL genType cot(genType angle);
/// Inverse secant function.
///
/// @return Return an angle expressed in radians.
/// @tparam genType Floating-point scalar or vector types.
///
/// @see gtc_reciprocal
template<typename genType>
GLM_FUNC_DECL genType asec(genType x);
/// Inverse cosecant function.
///
/// @return Return an angle expressed in radians.
/// @tparam genType Floating-point scalar or vector types.
///
/// @see gtc_reciprocal
template<typename genType>
GLM_FUNC_DECL genType acsc(genType x);
/// Inverse cotangent function.
///
/// @return Return an angle expressed in radians.
/// @tparam genType Floating-point scalar or vector types.
///
/// @see gtc_reciprocal
template<typename genType>
GLM_FUNC_DECL genType acot(genType x);
/// Secant hyperbolic function.
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see gtc_reciprocal
template<typename genType>
GLM_FUNC_DECL genType sech(genType angle);
/// Cosecant hyperbolic function.
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see gtc_reciprocal
template<typename genType>
GLM_FUNC_DECL genType csch(genType angle);
/// Cotangent hyperbolic function.
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see gtc_reciprocal
template<typename genType>
GLM_FUNC_DECL genType coth(genType angle);
/// Inverse secant hyperbolic function.
///
/// @return Return an angle expressed in radians.
/// @tparam genType Floating-point scalar or vector types.
///
/// @see gtc_reciprocal
template<typename genType>
GLM_FUNC_DECL genType asech(genType x);
/// Inverse cosecant hyperbolic function.
///
/// @return Return an angle expressed in radians.
/// @tparam genType Floating-point scalar or vector types.
///
/// @see gtc_reciprocal
template<typename genType>
GLM_FUNC_DECL genType acsch(genType x);
/// Inverse cotangent hyperbolic function.
///
/// @return Return an angle expressed in radians.
/// @tparam genType Floating-point scalar or vector types.
///
/// @see gtc_reciprocal
template<typename genType>
GLM_FUNC_DECL genType acoth(genType x);
/// @}
}//namespace glm
#include "reciprocal.inl"

192
glm/gtc/reciprocal.inl Normal file
View file

@ -0,0 +1,192 @@
/// @ref gtc_reciprocal
/// @file glm/gtc/reciprocal.inl
#include "../trigonometric.hpp"
#include <limits>
namespace glm
{
// sec
template<typename genType>
GLM_FUNC_QUALIFIER genType sec(genType angle)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'sec' only accept floating-point values");
return genType(1) / glm::cos(angle);
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, T, P> sec(vecType<L, T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'sec' only accept floating-point inputs");
return detail::functor1<L, T, T, P>::call(sec, x);
}
// csc
template<typename genType>
GLM_FUNC_QUALIFIER genType csc(genType angle)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'csc' only accept floating-point values");
return genType(1) / glm::sin(angle);
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, T, P> csc(vecType<L, T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'csc' only accept floating-point inputs");
return detail::functor1<L, T, T, P>::call(csc, x);
}
// cot
template<typename genType>
GLM_FUNC_QUALIFIER genType cot(genType angle)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'cot' only accept floating-point values");
genType const pi_over_2 = genType(3.1415926535897932384626433832795 / 2.0);
return glm::tan(pi_over_2 - angle);
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, T, P> cot(vecType<L, T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'cot' only accept floating-point inputs");
return detail::functor1<L, T, T, P>::call(cot, x);
}
// asec
template<typename genType>
GLM_FUNC_QUALIFIER genType asec(genType x)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'asec' only accept floating-point values");
return acos(genType(1) / x);
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, T, P> asec(vecType<L, T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'asec' only accept floating-point inputs");
return detail::functor1<L, T, T, P>::call(asec, x);
}
// acsc
template<typename genType>
GLM_FUNC_QUALIFIER genType acsc(genType x)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'acsc' only accept floating-point values");
return asin(genType(1) / x);
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, T, P> acsc(vecType<L, T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'acsc' only accept floating-point inputs");
return detail::functor1<L, T, T, P>::call(acsc, x);
}
// acot
template<typename genType>
GLM_FUNC_QUALIFIER genType acot(genType x)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'acot' only accept floating-point values");
genType const pi_over_2 = genType(3.1415926535897932384626433832795 / 2.0);
return pi_over_2 - atan(x);
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, T, P> acot(vecType<L, T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'acot' only accept floating-point inputs");
return detail::functor1<L, T, T, P>::call(acot, x);
}
// sech
template<typename genType>
GLM_FUNC_QUALIFIER genType sech(genType angle)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'sech' only accept floating-point values");
return genType(1) / glm::cosh(angle);
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, T, P> sech(vecType<L, T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'sech' only accept floating-point inputs");
return detail::functor1<L, T, T, P>::call(sech, x);
}
// csch
template<typename genType>
GLM_FUNC_QUALIFIER genType csch(genType angle)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'csch' only accept floating-point values");
return genType(1) / glm::sinh(angle);
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, T, P> csch(vecType<L, T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'csch' only accept floating-point inputs");
return detail::functor1<L, T, T, P>::call(csch, x);
}
// coth
template<typename genType>
GLM_FUNC_QUALIFIER genType coth(genType angle)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'coth' only accept floating-point values");
return glm::cosh(angle) / glm::sinh(angle);
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, T, P> coth(vecType<L, T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'coth' only accept floating-point inputs");
return detail::functor1<L, T, T, P>::call(coth, x);
}
// asech
template<typename genType>
GLM_FUNC_QUALIFIER genType asech(genType x)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'asech' only accept floating-point values");
return acosh(genType(1) / x);
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, T, P> asech(vecType<L, T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'asech' only accept floating-point inputs");
return detail::functor1<L, T, T, P>::call(asech, x);
}
// acsch
template<typename genType>
GLM_FUNC_QUALIFIER genType acsch(genType x)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'acsch' only accept floating-point values");
return acsch(genType(1) / x);
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, T, P> acsch(vecType<L, T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'acsch' only accept floating-point inputs");
return detail::functor1<L, T, T, P>::call(acsch, x);
}
// acoth
template<typename genType>
GLM_FUNC_QUALIFIER genType acoth(genType x)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'acoth' only accept floating-point values");
return atanh(genType(1) / x);
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, T, P> acoth(vecType<L, T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'acoth' only accept floating-point inputs");
return detail::functor1<L, T, T, P>::call(acoth, x);
}
}//namespace glm

174
glm/gtc/round.hpp Normal file
View file

@ -0,0 +1,174 @@
/// @ref gtc_round
/// @file glm/gtc/round.hpp
///
/// @see core (dependence)
/// @see gtc_round (dependence)
///
/// @defgroup gtc_round GLM_GTC_round
/// @ingroup gtc
///
/// @brief rounding value to specific boundings
///
/// <glm/gtc/round.hpp> need to be included to use these functionalities.
#pragma once
// Dependencies
#include "../detail/setup.hpp"
#include "../detail/precision.hpp"
#include "../detail/_vectorize.hpp"
#include "../vector_relational.hpp"
#include "../common.hpp"
#include <limits>
#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
# pragma message("GLM: GLM_GTC_integer extension included")
#endif
namespace glm
{
/// @addtogroup gtc_round
/// @{
/// Return true if the value is a power of two number.
///
/// @see gtc_round
template<typename genIUType>
GLM_FUNC_DECL bool isPowerOfTwo(genIUType Value);
/// Return true if the value is a power of two number.
///
/// @see gtc_round
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_DECL vecType<L, bool, P> isPowerOfTwo(vecType<L, T, P> const & value);
/// Return the power of two number which value is just higher the input value,
/// round up to a power of two.
///
/// @see gtc_round
template<typename genIUType>
GLM_FUNC_DECL genIUType ceilPowerOfTwo(genIUType Value);
/// Return the power of two number which value is just higher the input value,
/// round up to a power of two.
///
/// @see gtc_round
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_DECL vecType<L, T, P> ceilPowerOfTwo(vecType<L, T, P> const & value);
/// Return the power of two number which value is just lower the input value,
/// round down to a power of two.
///
/// @see gtc_round
template<typename genIUType>
GLM_FUNC_DECL genIUType floorPowerOfTwo(genIUType Value);
/// Return the power of two number which value is just lower the input value,
/// round down to a power of two.
///
/// @see gtc_round
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_DECL vecType<L, T, P> floorPowerOfTwo(vecType<L, T, P> const & value);
/// Return the power of two number which value is the closet to the input value.
///
/// @see gtc_round
template<typename genIUType>
GLM_FUNC_DECL genIUType roundPowerOfTwo(genIUType Value);
/// Return the power of two number which value is the closet to the input value.
///
/// @see gtc_round
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_DECL vecType<L, T, P> roundPowerOfTwo(vecType<L, T, P> const & value);
/// Return true if the 'Value' is a multiple of 'Multiple'.
///
/// @see gtc_round
template<typename genIUType>
GLM_FUNC_DECL bool isMultiple(genIUType Value, genIUType Multiple);
/// Return true if the 'Value' is a multiple of 'Multiple'.
///
/// @see gtc_round
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_DECL vecType<L, bool, P> isMultiple(vecType<L, T, P> const & Value, T Multiple);
/// Return true if the 'Value' is a multiple of 'Multiple'.
///
/// @see gtc_round
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_DECL vecType<L, bool, P> isMultiple(vecType<L, T, P> const & Value, vecType<L, T, P> const & Multiple);
/// Higher multiple number of Source.
///
/// @tparam genType Floating-point or integer scalar or vector types.
/// @param Source
/// @param Multiple Must be a null or positive value
///
/// @see gtc_round
template<typename genType>
GLM_FUNC_DECL genType ceilMultiple(genType Source, genType Multiple);
/// Higher multiple number of Source.
///
/// @tparam genType Floating-point or integer scalar or vector types.
/// @param Source
/// @param Multiple Must be a null or positive value
///
/// @see gtc_round
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_DECL vecType<L, T, P> ceilMultiple(vecType<L, T, P> const & Source, vecType<L, T, P> const & Multiple);
/// Lower multiple number of Source.
///
/// @tparam genType Floating-point or integer scalar or vector types.
/// @param Source
/// @param Multiple Must be a null or positive value
///
/// @see gtc_round
template<typename genType>
GLM_FUNC_DECL genType floorMultiple(
genType Source,
genType Multiple);
/// Lower multiple number of Source.
///
/// @tparam genType Floating-point or integer scalar or vector types.
/// @param Source
/// @param Multiple Must be a null or positive value
///
/// @see gtc_round
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_DECL vecType<L, T, P> floorMultiple(
vecType<L, T, P> const& Source,
vecType<L, T, P> const& Multiple);
/// Lower multiple number of Source.
///
/// @tparam genType Floating-point or integer scalar or vector types.
/// @param Source
/// @param Multiple Must be a null or positive value
///
/// @see gtc_round
template<typename genType>
GLM_FUNC_DECL genType roundMultiple(
genType Source,
genType Multiple);
/// Lower multiple number of Source.
///
/// @tparam genType Floating-point or integer scalar or vector types.
/// @param Source
/// @param Multiple Must be a null or positive value
///
/// @see gtc_round
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_DECL vecType<L, T, P> roundMultiple(
vecType<L, T, P> const& Source,
vecType<L, T, P> const& Multiple);
/// @}
} //namespace glm
#include "round.inl"

344
glm/gtc/round.inl Normal file
View file

@ -0,0 +1,344 @@
/// @ref gtc_round
/// @file glm/gtc/round.inl
#include "../detail/func_integer.hpp"
namespace glm{
namespace detail
{
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType, bool compute = false>
struct compute_ceilShift
{
GLM_FUNC_QUALIFIER static vecType<L, T, P> call(vecType<L, T, P> const & v, T)
{
return v;
}
};
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
struct compute_ceilShift<L, T, P, vecType, true>
{
GLM_FUNC_QUALIFIER static vecType<L, T, P> call(vecType<L, T, P> const & v, T Shift)
{
return v | (v >> Shift);
}
};
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType, bool isSigned = true>
struct compute_ceilPowerOfTwo
{
GLM_FUNC_QUALIFIER static vecType<L, T, P> call(vecType<L, T, P> const & x)
{
GLM_STATIC_ASSERT(!std::numeric_limits<T>::is_iec559, "'ceilPowerOfTwo' only accept integer scalar or vector inputs");
vecType<L, T, P> const Sign(sign(x));
vecType<L, T, P> v(abs(x));
v = v - static_cast<T>(1);
v = v | (v >> static_cast<T>(1));
v = v | (v >> static_cast<T>(2));
v = v | (v >> static_cast<T>(4));
v = compute_ceilShift<L, T, P, vecType, sizeof(T) >= 2>::call(v, 8);
v = compute_ceilShift<L, T, P, vecType, sizeof(T) >= 4>::call(v, 16);
v = compute_ceilShift<L, T, P, vecType, sizeof(T) >= 8>::call(v, 32);
return (v + static_cast<T>(1)) * Sign;
}
};
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
struct compute_ceilPowerOfTwo<L, T, P, vecType, false>
{
GLM_FUNC_QUALIFIER static vecType<L, T, P> call(vecType<L, T, P> const & x)
{
GLM_STATIC_ASSERT(!std::numeric_limits<T>::is_iec559, "'ceilPowerOfTwo' only accept integer scalar or vector inputs");
vecType<L, T, P> v(x);
v = v - static_cast<T>(1);
v = v | (v >> static_cast<T>(1));
v = v | (v >> static_cast<T>(2));
v = v | (v >> static_cast<T>(4));
v = compute_ceilShift<L, T, P, vecType, sizeof(T) >= 2>::call(v, 8);
v = compute_ceilShift<L, T, P, vecType, sizeof(T) >= 4>::call(v, 16);
v = compute_ceilShift<L, T, P, vecType, sizeof(T) >= 8>::call(v, 32);
return v + static_cast<T>(1);
}
};
template<bool is_float, bool is_signed>
struct compute_ceilMultiple{};
template<>
struct compute_ceilMultiple<true, true>
{
template<typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source > genType(0))
return Source + (Multiple - std::fmod(Source, Multiple));
else
return Source + std::fmod(-Source, Multiple);
}
};
template<>
struct compute_ceilMultiple<false, false>
{
template<typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
genType Tmp = Source - genType(1);
return Tmp + (Multiple - (Tmp % Multiple));
}
};
template<>
struct compute_ceilMultiple<false, true>
{
template<typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source > genType(0))
{
genType Tmp = Source - genType(1);
return Tmp + (Multiple - (Tmp % Multiple));
}
else
return Source + (-Source % Multiple);
}
};
template<bool is_float, bool is_signed>
struct compute_floorMultiple{};
template<>
struct compute_floorMultiple<true, true>
{
template<typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source >= genType(0))
return Source - std::fmod(Source, Multiple);
else
return Source - std::fmod(Source, Multiple) - Multiple;
}
};
template<>
struct compute_floorMultiple<false, false>
{
template<typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source >= genType(0))
return Source - Source % Multiple;
else
{
genType Tmp = Source + genType(1);
return Tmp - Tmp % Multiple - Multiple;
}
}
};
template<>
struct compute_floorMultiple<false, true>
{
template<typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source >= genType(0))
return Source - Source % Multiple;
else
{
genType Tmp = Source + genType(1);
return Tmp - Tmp % Multiple - Multiple;
}
}
};
template<bool is_float, bool is_signed>
struct compute_roundMultiple{};
template<>
struct compute_roundMultiple<true, true>
{
template<typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source >= genType(0))
return Source - std::fmod(Source, Multiple);
else
{
genType Tmp = Source + genType(1);
return Tmp - std::fmod(Tmp, Multiple) - Multiple;
}
}
};
template<>
struct compute_roundMultiple<false, false>
{
template<typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source >= genType(0))
return Source - Source % Multiple;
else
{
genType Tmp = Source + genType(1);
return Tmp - Tmp % Multiple - Multiple;
}
}
};
template<>
struct compute_roundMultiple<false, true>
{
template<typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source >= genType(0))
return Source - Source % Multiple;
else
{
genType Tmp = Source + genType(1);
return Tmp - Tmp % Multiple - Multiple;
}
}
};
}//namespace detail
////////////////
// isPowerOfTwo
template<typename genType>
GLM_FUNC_QUALIFIER bool isPowerOfTwo(genType Value)
{
genType const Result = glm::abs(Value);
return !(Result & (Result - 1));
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, bool, P> isPowerOfTwo(vecType<L, T, P> const & Value)
{
vecType<L, T, P> const Result(abs(Value));
return equal(Result & (Result - 1), vecType<L, T, P>(0));
}
//////////////////
// ceilPowerOfTwo
template<typename genType>
GLM_FUNC_QUALIFIER genType ceilPowerOfTwo(genType value)
{
return detail::compute_ceilPowerOfTwo<1, genType, defaultp, vec, std::numeric_limits<genType>::is_signed>::call(vec<1, genType, defaultp>(value)).x;
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, T, P> ceilPowerOfTwo(vecType<L, T, P> const & v)
{
return detail::compute_ceilPowerOfTwo<L, T, P, vecType, std::numeric_limits<T>::is_signed>::call(v);
}
///////////////////
// floorPowerOfTwo
template<typename genType>
GLM_FUNC_QUALIFIER genType floorPowerOfTwo(genType value)
{
return isPowerOfTwo(value) ? value : static_cast<genType>(1) << findMSB(value);
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, T, P> floorPowerOfTwo(vecType<L, T, P> const & v)
{
return detail::functor1<L, T, T, P>::call(floorPowerOfTwo, v);
}
///////////////////
// roundPowerOfTwo
template<typename genIUType>
GLM_FUNC_QUALIFIER genIUType roundPowerOfTwo(genIUType value)
{
if(isPowerOfTwo(value))
return value;
genIUType const prev = static_cast<genIUType>(1) << findMSB(value);
genIUType const next = prev << static_cast<genIUType>(1);
return (next - value) < (value - prev) ? next : prev;
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, T, P> roundPowerOfTwo(vecType<L, T, P> const & v)
{
return detail::functor1<L, T, T, P>::call(roundPowerOfTwo, v);
}
////////////////
// isMultiple
template<typename genType>
GLM_FUNC_QUALIFIER bool isMultiple(genType Value, genType Multiple)
{
return isMultiple(vec<1, genType>(Value), vec<1, genType>(Multiple)).x;
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, bool, P> isMultiple(vecType<L, T, P> const & Value, T Multiple)
{
return (Value % Multiple) == vecType<L, T, P>(0);
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, bool, P> isMultiple(vecType<L, T, P> const & Value, vecType<L, T, P> const & Multiple)
{
return (Value % Multiple) == vecType<L, T, P>(0);
}
//////////////////////
// ceilMultiple
template<typename genType>
GLM_FUNC_QUALIFIER genType ceilMultiple(genType Source, genType Multiple)
{
return detail::compute_ceilMultiple<std::numeric_limits<genType>::is_iec559, std::numeric_limits<genType>::is_signed>::call(Source, Multiple);
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, T, P> ceilMultiple(vecType<L, T, P> const & Source, vecType<L, T, P> const & Multiple)
{
return detail::functor2<L, T, P>::call(ceilMultiple, Source, Multiple);
}
//////////////////////
// floorMultiple
template<typename genType>
GLM_FUNC_QUALIFIER genType floorMultiple(genType Source, genType Multiple)
{
return detail::compute_floorMultiple<std::numeric_limits<genType>::is_iec559, std::numeric_limits<genType>::is_signed>::call(Source, Multiple);
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, T, P> floorMultiple(vecType<L, T, P> const & Source, vecType<L, T, P> const & Multiple)
{
return detail::functor2<L, T, P>::call(floorMultiple, Source, Multiple);
}
//////////////////////
// roundMultiple
template<typename genType>
GLM_FUNC_QUALIFIER genType roundMultiple(genType Source, genType Multiple)
{
return detail::compute_roundMultiple<std::numeric_limits<genType>::is_iec559, std::numeric_limits<genType>::is_signed>::call(Source, Multiple);
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, T, P> roundMultiple(vecType<L, T, P> const & Source, vecType<L, T, P> const & Multiple)
{
return detail::functor2<L, T, P>::call(roundMultiple, Source, Multiple);
}
}//namespace glm

358
glm/gtc/type_aligned.hpp Normal file
View file

@ -0,0 +1,358 @@
/// @ref gtc_type_aligned
/// @file glm/gtc/type_aligned.hpp
///
/// @see core (dependence)
///
/// @defgroup gtc_type_aligned GLM_GTC_type_aligned
/// @ingroup gtc
///
/// @brief Aligned types.
/// <glm/gtc/type_aligned.hpp> need to be included to use these features.
#pragma once
#if !GLM_HAS_ALIGNED_TYPE
# error "GLM: Aligned types are not supported on this platform"
#endif
#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
# pragma message("GLM: GLM_GTC_type_aligned extension included")
#endif
#include "../vec2.hpp"
#include "../vec3.hpp"
#include "../vec4.hpp"
#include "../gtc/vec1.hpp"
namespace glm
{
/// @addtogroup gtc_type_aligned
/// @{
// -- *vec1 --
typedef vec<1, float, aligned_highp> aligned_highp_vec1;
typedef vec<1, float, aligned_mediump> aligned_mediump_vec1;
typedef vec<1, float, aligned_lowp> aligned_lowp_vec1;
typedef vec<1, double, aligned_highp> aligned_highp_dvec1;
typedef vec<1, double, aligned_mediump> aligned_mediump_dvec1;
typedef vec<1, double, aligned_lowp> aligned_lowp_dvec1;
typedef vec<1, int, aligned_highp> aligned_highp_ivec1;
typedef vec<1, int, aligned_mediump> aligned_mediump_ivec1;
typedef vec<1, int, aligned_lowp> aligned_lowp_ivec1;
typedef vec<1, uint, aligned_highp> aligned_highp_uvec1;
typedef vec<1, uint, aligned_mediump> aligned_mediump_uvec1;
typedef vec<1, uint, aligned_lowp> aligned_lowp_uvec1;
typedef vec<1, bool, aligned_highp> aligned_highp_bvec1;
typedef vec<1, bool, aligned_mediump> aligned_mediump_bvec1;
typedef vec<1, bool, aligned_lowp> aligned_lowp_bvec1;
typedef vec<1, float, packed_highp> packed_highp_vec1;
typedef vec<1, float, packed_mediump> packed_mediump_vec1;
typedef vec<1, float, packed_lowp> packed_lowp_vec1;
typedef vec<1, double, packed_highp> packed_highp_dvec1;
typedef vec<1, double, packed_mediump> packed_mediump_dvec1;
typedef vec<1, double, packed_lowp> packed_lowp_dvec1;
typedef vec<1, int, packed_highp> packed_highp_ivec1;
typedef vec<1, int, packed_mediump> packed_mediump_ivec1;
typedef vec<1, int, packed_lowp> packed_lowp_ivec1;
typedef vec<1, uint, packed_highp> packed_highp_uvec1;
typedef vec<1, uint, packed_mediump> packed_mediump_uvec1;
typedef vec<1, uint, packed_lowp> packed_lowp_uvec1;
typedef vec<1, bool, packed_highp> packed_highp_bvec1;
typedef vec<1, bool, packed_mediump> packed_mediump_bvec1;
typedef vec<1, bool, packed_lowp> packed_lowp_bvec1;
// -- *vec2 --
/// 2 components vector of high single-precision floating-point numbers.
/// There is no guarantee on the actual precision.
typedef vec<2, float, aligned_highp> aligned_highp_vec2;
/// 2 components vector of medium single-precision floating-point numbers.
/// There is no guarantee on the actual precision.
typedef vec<2, float, aligned_mediump> aligned_mediump_vec2;
/// 2 components vector of low single-precision floating-point numbers.
/// There is no guarantee on the actual precision.
typedef vec<2, float, aligned_lowp> aligned_lowp_vec2;
/// 2 components vector of high double-precision floating-point numbers.
/// There is no guarantee on the actual precision.
typedef vec<2, double, aligned_highp> aligned_highp_dvec2;
/// 2 components vector of medium double-precision floating-point numbers.
/// There is no guarantee on the actual precision.
typedef vec<2, double, aligned_mediump> aligned_mediump_dvec2;
/// 2 components vector of low double-precision floating-point numbers.
/// There is no guarantee on the actual precision.
typedef vec<2, double, aligned_lowp> aligned_lowp_dvec2;
/// 2 components vector of high precision signed integer numbers.
/// There is no guarantee on the actual precision.
typedef vec<2, int, aligned_highp> aligned_highp_ivec2;
/// 2 components vector of medium precision signed integer numbers.
/// There is no guarantee on the actual precision.
typedef vec<2, int, aligned_mediump> aligned_mediump_ivec2;
/// 2 components vector of low precision signed integer numbers.
/// There is no guarantee on the actual precision.
typedef vec<2, int, aligned_lowp> aligned_lowp_ivec2;
/// 2 components vector of high precision unsigned integer numbers.
/// There is no guarantee on the actual precision.
typedef vec<2, uint, aligned_highp> aligned_highp_uvec2;
/// 2 components vector of medium precision unsigned integer numbers.
/// There is no guarantee on the actual precision.
typedef vec<2, uint, aligned_mediump> aligned_mediump_uvec2;
/// 2 components vector of low precision unsigned integer numbers.
/// There is no guarantee on the actual precision.
typedef vec<2, uint, aligned_lowp> aligned_lowp_uvec2;
/// 2 components vector of high precision bool numbers.
/// There is no guarantee on the actual precision.
typedef vec<2, bool, aligned_highp> aligned_highp_bvec2;
/// 2 components vector of medium precision bool numbers.
/// There is no guarantee on the actual precision.
typedef vec<2, bool, aligned_mediump> aligned_mediump_bvec2;
/// 2 components vector of low precision bool numbers.
/// There is no guarantee on the actual precision.
typedef vec<2, bool, aligned_lowp> aligned_lowp_bvec2;
// -- *vec3 --
/// 3 components vector of high single-precision floating-point numbers.
/// There is no guarantee on the actual precision.
typedef vec<3, float, aligned_highp> aligned_highp_vec3;
/// 3 components vector of medium single-precision floating-point numbers.
/// There is no guarantee on the actual precision.
typedef vec<3, float, aligned_mediump> aligned_mediump_vec3;
/// 3 components vector of low single-precision floating-point numbers.
/// There is no guarantee on the actual precision.
typedef vec<3, float, aligned_lowp> aligned_lowp_vec3;
/// 3 components vector of high double-precision floating-point numbers.
/// There is no guarantee on the actual precision.
typedef vec<3, double, aligned_highp> aligned_highp_dvec3;
/// 3 components vector of medium double-precision floating-point numbers.
/// There is no guarantee on the actual precision.
typedef vec<3, double, aligned_mediump> aligned_mediump_dvec3;
/// 3 components vector of low double-precision floating-point numbers.
/// There is no guarantee on the actual precision.
typedef vec<3, double, aligned_lowp> aligned_lowp_dvec3;
/// 3 components vector of high precision signed integer numbers.
/// There is no guarantee on the actual precision.
typedef vec<3, int, aligned_highp> aligned_highp_ivec3;
/// 3 components vector of medium precision signed integer numbers.
/// There is no guarantee on the actual precision.
typedef vec<3, int, aligned_mediump> aligned_mediump_ivec3;
/// 3 components vector of low precision signed integer numbers.
/// There is no guarantee on the actual precision.
typedef vec<3, int, aligned_lowp> aligned_lowp_ivec3;
/// 3 components vector of high precision unsigned integer numbers.
/// There is no guarantee on the actual precision.
typedef vec<3, uint, aligned_highp> aligned_highp_uvec3;
/// 3 components vector of medium precision unsigned integer numbers.
/// There is no guarantee on the actual precision.
typedef vec<3, uint, aligned_mediump> aligned_mediump_uvec3;
/// 3 components vector of low precision unsigned integer numbers.
/// There is no guarantee on the actual precision.
typedef vec<3, uint, aligned_lowp> aligned_lowp_uvec3;
/// 3 components vector of high precision bool numbers.
typedef vec<3, bool, aligned_highp> aligned_highp_bvec3;
/// 3 components vector of medium precision bool numbers.
typedef vec<3, bool, aligned_mediump> aligned_mediump_bvec3;
/// 3 components vector of low precision bool numbers.
typedef vec<3, bool, aligned_lowp> aligned_lowp_bvec3;
// -- *vec4 --
/// 4 components vector of high single-precision floating-point numbers.
typedef vec<4, float, aligned_highp> aligned_highp_vec4;
/// 4 components vector of medium single-precision floating-point numbers.
typedef vec<4, float, aligned_mediump> aligned_mediump_vec4;
/// 4 components vector of low single-precision floating-point numbers.
typedef vec<4, float, aligned_lowp> aligned_lowp_vec4;
/// 4 components vector of high double-precision floating-point numbers.
typedef vec<4, double, aligned_highp> aligned_highp_dvec4;
/// 4 components vector of medium double-precision floating-point numbers.
typedef vec<4, double, aligned_mediump> aligned_mediump_dvec4;
/// 4 components vector of low double-precision floating-point numbers.
typedef vec<4, double, aligned_lowp> aligned_lowp_dvec4;
/// 4 components vector of high precision signed integer numbers.
typedef vec<4, int, aligned_highp> aligned_highp_ivec4;
/// 4 components vector of medium precision signed integer numbers.
typedef vec<4, int, aligned_mediump> aligned_mediump_ivec4;
/// 4 components vector of low precision signed integer numbers.
typedef vec<4, int, aligned_lowp> aligned_lowp_ivec4;
/// 4 components vector of high precision unsigned integer numbers.
typedef vec<4, uint, aligned_highp> aligned_highp_uvec4;
/// 4 components vector of medium precision unsigned integer numbers.
typedef vec<4, uint, aligned_mediump> aligned_mediump_uvec4;
/// 4 components vector of low precision unsigned integer numbers.
typedef vec<4, uint, aligned_lowp> aligned_lowp_uvec4;
/// 4 components vector of high precision bool numbers.
typedef vec<4, bool, aligned_highp> aligned_highp_bvec4;
/// 4 components vector of medium precision bool numbers.
typedef vec<4, bool, aligned_mediump> aligned_mediump_bvec4;
/// 4 components vector of low precision bool numbers.
typedef vec<4, bool, aligned_lowp> aligned_lowp_bvec4;
// -- default --
#if(defined(GLM_PRECISION_LOWP_FLOAT))
typedef aligned_lowp_vec1 aligned_vec1;
typedef aligned_lowp_vec2 aligned_vec2;
typedef aligned_lowp_vec3 aligned_vec3;
typedef aligned_lowp_vec4 aligned_vec4;
#elif(defined(GLM_PRECISION_MEDIUMP_FLOAT))
typedef aligned_mediump_vec1 aligned_vec1;
typedef aligned_mediump_vec2 aligned_vec2;
typedef aligned_mediump_vec3 aligned_vec3;
typedef aligned_mediump_vec4 aligned_vec4;
#else //defined(GLM_PRECISION_HIGHP_FLOAT)
/// 1 component vector of floating-point numbers.
typedef aligned_highp_vec1 aligned_vec1;
/// 2 components vector of floating-point numbers.
typedef aligned_highp_vec2 aligned_vec2;
/// 3 components vector of floating-point numbers.
typedef aligned_highp_vec3 aligned_vec3;
/// 4 components vector of floating-point numbers.
typedef aligned_highp_vec4 aligned_vec4;
#endif//GLM_PRECISION
#if(defined(GLM_PRECISION_LOWP_DOUBLE))
typedef aligned_lowp_dvec1 aligned_dvec1;
typedef aligned_lowp_dvec2 aligned_dvec2;
typedef aligned_lowp_dvec3 aligned_dvec3;
typedef aligned_lowp_dvec4 aligned_dvec4;
#elif(defined(GLM_PRECISION_MEDIUMP_DOUBLE))
typedef aligned_mediump_dvec1 aligned_dvec1;
typedef aligned_mediump_dvec2 aligned_dvec2;
typedef aligned_mediump_dvec3 aligned_dvec3;
typedef aligned_mediump_dvec4 aligned_dvec4;
#else //defined(GLM_PRECISION_HIGHP_DOUBLE)
/// 1 component vector of double-precision floating-point numbers.
typedef aligned_highp_dvec1 aligned_dvec1;
/// 2 components vector of double-precision floating-point numbers.
typedef aligned_highp_dvec2 aligned_dvec2;
/// 3 components vector of double-precision floating-point numbers.
typedef aligned_highp_dvec3 aligned_dvec3;
/// 4 components vector of double-precision floating-point numbers.
typedef aligned_highp_dvec4 aligned_dvec4;
#endif//GLM_PRECISION
#if(defined(GLM_PRECISION_LOWP_INT))
typedef aligned_lowp_ivec1 aligned_ivec1;
typedef aligned_lowp_ivec2 aligned_ivec2;
typedef aligned_lowp_ivec3 aligned_ivec3;
typedef aligned_lowp_ivec4 aligned_ivec4;
#elif(defined(GLM_PRECISION_MEDIUMP_INT))
typedef aligned_mediump_ivec1 aligned_ivec1;
typedef aligned_mediump_ivec2 aligned_ivec2;
typedef aligned_mediump_ivec3 aligned_ivec3;
typedef aligned_mediump_ivec4 aligned_ivec4;
#else //defined(GLM_PRECISION_HIGHP_INT)
/// 1 component vector of signed integer numbers.
typedef aligned_highp_ivec1 aligned_ivec1;
/// 2 components vector of signed integer numbers.
typedef aligned_highp_ivec2 aligned_ivec2;
/// 3 components vector of signed integer numbers.
typedef aligned_highp_ivec3 aligned_ivec3;
/// 4 components vector of signed integer numbers.
typedef aligned_highp_ivec4 aligned_ivec4;
#endif//GLM_PRECISION
// -- Unsigned integer definition --
#if(defined(GLM_PRECISION_LOWP_UINT))
typedef aligned_lowp_uvec1 aligned_uvec1;
typedef aligned_lowp_uvec2 aligned_uvec2;
typedef aligned_lowp_uvec3 aligned_uvec3;
typedef aligned_lowp_uvec4 aligned_uvec4;
#elif(defined(GLM_PRECISION_MEDIUMP_UINT))
typedef aligned_mediump_uvec1 aligned_uvec1;
typedef aligned_mediump_uvec2 aligned_uvec2;
typedef aligned_mediump_uvec3 aligned_uvec3;
typedef aligned_mediump_uvec4 aligned_uvec4;
#else //defined(GLM_PRECISION_HIGHP_UINT)
/// 1 component vector of unsigned integer numbers.
typedef aligned_highp_uvec1 aligned_uvec1;
/// 2 components vector of unsigned integer numbers.
typedef aligned_highp_uvec2 aligned_uvec2;
/// 3 components vector of unsigned integer numbers.
typedef aligned_highp_uvec3 aligned_uvec3;
/// 4 components vector of unsigned integer numbers.
typedef aligned_highp_uvec4 aligned_uvec4;
#endif//GLM_PRECISION
#if(defined(GLM_PRECISION_LOWP_BOOL))
typedef aligned_lowp_bvec1 aligned_bvec1;
typedef aligned_lowp_bvec2 aligned_bvec2;
typedef aligned_lowp_bvec3 aligned_bvec3;
typedef aligned_lowp_bvec4 aligned_bvec4;
#elif(defined(GLM_PRECISION_MEDIUMP_BOOL))
typedef aligned_mediump_bvec1 aligned_bvec1;
typedef aligned_mediump_bvec2 aligned_bvec2;
typedef aligned_mediump_bvec3 aligned_bvec3;
typedef aligned_mediump_bvec4 aligned_bvec4;
#else //defined(GLM_PRECISION_HIGHP_BOOL)
/// 1 component vector of boolean.
typedef aligned_highp_bvec1 aligned_bvec1;
/// 2 components vector of boolean.
typedef aligned_highp_bvec2 aligned_bvec2;
/// 3 components vector of boolean.
typedef aligned_highp_bvec3 aligned_bvec3;
/// 4 components vector of boolean.
typedef aligned_highp_bvec4 aligned_bvec4;
#endif//GLM_PRECISION
/// @}
}//namespace glm

860
glm/gtc/type_precision.hpp Normal file
View file

@ -0,0 +1,860 @@
/// @ref gtc_type_precision
/// @file glm/gtc/type_precision.hpp
///
/// @see core (dependence)
/// @see gtc_quaternion (dependence)
///
/// @defgroup gtc_type_precision GLM_GTC_type_precision
/// @ingroup gtc
///
/// @brief Defines specific C++-based precision types.
///
/// @ref core_precision defines types based on GLSL's precision qualifiers. This
/// extension defines types based on explicitly-sized C++ data types.
///
/// <glm/gtc/type_precision.hpp> need to be included to use these functionalities.
#pragma once
// Dependency:
#include "../gtc/quaternion.hpp"
#include "../gtc/vec1.hpp"
#include "../vec2.hpp"
#include "../vec3.hpp"
#include "../vec4.hpp"
#include "../mat2x2.hpp"
#include "../mat2x3.hpp"
#include "../mat2x4.hpp"
#include "../mat3x2.hpp"
#include "../mat3x3.hpp"
#include "../mat3x4.hpp"
#include "../mat4x2.hpp"
#include "../mat4x3.hpp"
#include "../mat4x4.hpp"
#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
# pragma message("GLM: GLM_GTC_type_precision extension included")
#endif
namespace glm
{
///////////////////////////
// Signed int vector types
/// @addtogroup gtc_type_precision
/// @{
/// Low precision 8 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int8 lowp_int8;
/// Low precision 16 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int16 lowp_int16;
/// Low precision 32 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int32 lowp_int32;
/// Low precision 64 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int64 lowp_int64;
/// Low precision 8 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int8 lowp_int8_t;
/// Low precision 16 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int16 lowp_int16_t;
/// Low precision 32 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int32 lowp_int32_t;
/// Low precision 64 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int64 lowp_int64_t;
/// Low precision 8 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int8 lowp_i8;
/// Low precision 16 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int16 lowp_i16;
/// Low precision 32 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int32 lowp_i32;
/// Low precision 64 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int64 lowp_i64;
/// Medium precision 8 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int8 mediump_int8;
/// Medium precision 16 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int16 mediump_int16;
/// Medium precision 32 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int32 mediump_int32;
/// Medium precision 64 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int64 mediump_int64;
/// Medium precision 8 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int8 mediump_int8_t;
/// Medium precision 16 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int16 mediump_int16_t;
/// Medium precision 32 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int32 mediump_int32_t;
/// Medium precision 64 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int64 mediump_int64_t;
/// Medium precision 8 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int8 mediump_i8;
/// Medium precision 16 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int16 mediump_i16;
/// Medium precision 32 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int32 mediump_i32;
/// Medium precision 64 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int64 mediump_i64;
/// High precision 8 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int8 highp_int8;
/// High precision 16 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int16 highp_int16;
/// High precision 32 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int32 highp_int32;
/// High precision 64 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int64 highp_int64;
/// High precision 8 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int8 highp_int8_t;
/// High precision 16 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int16 highp_int16_t;
/// 32 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int32 highp_int32_t;
/// High precision 64 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int64 highp_int64_t;
/// High precision 8 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int8 highp_i8;
/// High precision 16 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int16 highp_i16;
/// High precision 32 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int32 highp_i32;
/// High precision 64 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int64 highp_i64;
/// 8 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int8 int8;
/// 16 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int16 int16;
/// 32 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int32 int32;
/// 64 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int64 int64;
#if GLM_HAS_EXTENDED_INTEGER_TYPE
using std::int8_t;
using std::int16_t;
using std::int32_t;
using std::int64_t;
#else
/// 8 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int8 int8_t;
/// 16 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int16 int16_t;
/// 32 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int32 int32_t;
/// 64 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int64 int64_t;
#endif
/// 8 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int8 i8;
/// 16 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int16 i16;
/// 32 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int32 i32;
/// 64 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int64 i64;
/// 8 bit signed integer scalar type.
/// @see gtc_type_precision
typedef vec<1, i8, defaultp> i8vec1;
/// 8 bit signed integer vector of 2 components type.
/// @see gtc_type_precision
typedef vec<2, i8, defaultp> i8vec2;
/// 8 bit signed integer vector of 3 components type.
/// @see gtc_type_precision
typedef vec<3, i8, defaultp> i8vec3;
/// 8 bit signed integer vector of 4 components type.
/// @see gtc_type_precision
typedef vec<4, i8, defaultp> i8vec4;
/// 16 bit signed integer scalar type.
/// @see gtc_type_precision
typedef vec<1, i16, defaultp> i16vec1;
/// 16 bit signed integer vector of 2 components type.
/// @see gtc_type_precision
typedef vec<2, i16, defaultp> i16vec2;
/// 16 bit signed integer vector of 3 components type.
/// @see gtc_type_precision
typedef vec<3, i16, defaultp> i16vec3;
/// 16 bit signed integer vector of 4 components type.
/// @see gtc_type_precision
typedef vec<4, i16, defaultp> i16vec4;
/// 32 bit signed integer scalar type.
/// @see gtc_type_precision
typedef vec<1, i32, defaultp> i32vec1;
/// 32 bit signed integer vector of 2 components type.
/// @see gtc_type_precision
typedef vec<2, i32, defaultp> i32vec2;
/// 32 bit signed integer vector of 3 components type.
/// @see gtc_type_precision
typedef vec<3, i32, defaultp> i32vec3;
/// 32 bit signed integer vector of 4 components type.
/// @see gtc_type_precision
typedef vec<4, i32, defaultp> i32vec4;
/// 64 bit signed integer scalar type.
/// @see gtc_type_precision
typedef vec<1, i64, defaultp> i64vec1;
/// 64 bit signed integer vector of 2 components type.
/// @see gtc_type_precision
typedef vec<2, i64, defaultp> i64vec2;
/// 64 bit signed integer vector of 3 components type.
/// @see gtc_type_precision
typedef vec<3, i64, defaultp> i64vec3;
/// 64 bit signed integer vector of 4 components type.
/// @see gtc_type_precision
typedef vec<4, i64, defaultp> i64vec4;
/////////////////////////////
// Unsigned int vector types
/// Low precision 8 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint8 lowp_uint8;
/// Low precision 16 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint16 lowp_uint16;
/// Low precision 32 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint32 lowp_uint32;
/// Low precision 64 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint64 lowp_uint64;
/// Low precision 8 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint8 lowp_uint8_t;
/// Low precision 16 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint16 lowp_uint16_t;
/// Low precision 32 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint32 lowp_uint32_t;
/// Low precision 64 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint64 lowp_uint64_t;
/// Low precision 8 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint8 lowp_u8;
/// Low precision 16 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint16 lowp_u16;
/// Low precision 32 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint32 lowp_u32;
/// Low precision 64 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint64 lowp_u64;
/// Medium precision 8 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint8 mediump_uint8;
/// Medium precision 16 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint16 mediump_uint16;
/// Medium precision 32 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint32 mediump_uint32;
/// Medium precision 64 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint64 mediump_uint64;
/// Medium precision 8 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint8 mediump_uint8_t;
/// Medium precision 16 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint16 mediump_uint16_t;
/// Medium precision 32 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint32 mediump_uint32_t;
/// Medium precision 64 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint64 mediump_uint64_t;
/// Medium precision 8 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint8 mediump_u8;
/// Medium precision 16 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint16 mediump_u16;
/// Medium precision 32 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint32 mediump_u32;
/// Medium precision 64 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint64 mediump_u64;
/// High precision 8 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint8 highp_uint8;
/// High precision 16 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint16 highp_uint16;
/// High precision 32 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint32 highp_uint32;
/// High precision 64 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint64 highp_uint64;
/// High precision 8 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint8 highp_uint8_t;
/// High precision 16 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint16 highp_uint16_t;
/// High precision 32 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint32 highp_uint32_t;
/// High precision 64 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint64 highp_uint64_t;
/// High precision 8 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint8 highp_u8;
/// High precision 16 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint16 highp_u16;
/// High precision 32 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint32 highp_u32;
/// High precision 64 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint64 highp_u64;
/// Default precision 8 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint8 uint8;
/// Default precision 16 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint16 uint16;
/// Default precision 32 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint32 uint32;
/// Default precision 64 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint64 uint64;
#if GLM_HAS_EXTENDED_INTEGER_TYPE
using std::uint8_t;
using std::uint16_t;
using std::uint32_t;
using std::uint64_t;
#else
/// Default precision 8 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint8 uint8_t;
/// Default precision 16 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint16 uint16_t;
/// Default precision 32 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint32 uint32_t;
/// Default precision 64 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint64 uint64_t;
#endif
/// Default precision 8 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint8 u8;
/// Default precision 16 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint16 u16;
/// Default precision 32 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint32 u32;
/// Default precision 64 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint64 u64;
/// Default precision 8 bit unsigned integer scalar type.
/// @see gtc_type_precision
typedef vec<1, u8, defaultp> u8vec1;
/// Default precision 8 bit unsigned integer vector of 2 components type.
/// @see gtc_type_precision
typedef vec<2, u8, defaultp> u8vec2;
/// Default precision 8 bit unsigned integer vector of 3 components type.
/// @see gtc_type_precision
typedef vec<3, u8, defaultp> u8vec3;
/// Default precision 8 bit unsigned integer vector of 4 components type.
/// @see gtc_type_precision
typedef vec<4, u8, defaultp> u8vec4;
/// Default precision 16 bit unsigned integer scalar type.
/// @see gtc_type_precision
typedef vec<1, u16, defaultp> u16vec1;
/// Default precision 16 bit unsigned integer vector of 2 components type.
/// @see gtc_type_precision
typedef vec<2, u16, defaultp> u16vec2;
/// Default precision 16 bit unsigned integer vector of 3 components type.
/// @see gtc_type_precision
typedef vec<3, u16, defaultp> u16vec3;
/// Default precision 16 bit unsigned integer vector of 4 components type.
/// @see gtc_type_precision
typedef vec<4, u16, defaultp> u16vec4;
/// Default precision 32 bit unsigned integer scalar type.
/// @see gtc_type_precision
typedef vec<1, u32, defaultp> u32vec1;
/// Default precision 32 bit unsigned integer vector of 2 components type.
/// @see gtc_type_precision
typedef vec<2, u32, defaultp> u32vec2;
/// Default precision 32 bit unsigned integer vector of 3 components type.
/// @see gtc_type_precision
typedef vec<3, u32, defaultp> u32vec3;
/// Default precision 32 bit unsigned integer vector of 4 components type.
/// @see gtc_type_precision
typedef vec<4, u32, defaultp> u32vec4;
/// Default precision 64 bit unsigned integer scalar type.
/// @see gtc_type_precision
typedef vec<1, u64, defaultp> u64vec1;
/// Default precision 64 bit unsigned integer vector of 2 components type.
/// @see gtc_type_precision
typedef vec<2, u64, defaultp> u64vec2;
/// Default precision 64 bit unsigned integer vector of 3 components type.
/// @see gtc_type_precision
typedef vec<3, u64, defaultp> u64vec3;
/// Default precision 64 bit unsigned integer vector of 4 components type.
/// @see gtc_type_precision
typedef vec<4, u64, defaultp> u64vec4;
//////////////////////
// Float vector types
/// 32 bit single-precision floating-point scalar.
/// @see gtc_type_precision
typedef detail::float32 float32;
/// 64 bit double-precision floating-point scalar.
/// @see gtc_type_precision
typedef detail::float64 float64;
/// 32 bit single-precision floating-point scalar.
/// @see gtc_type_precision
typedef detail::float32 float32_t;
/// 64 bit double-precision floating-point scalar.
/// @see gtc_type_precision
typedef detail::float64 float64_t;
/// 32 bit single-precision floating-point scalar.
/// @see gtc_type_precision
typedef float32 f32;
/// 64 bit double-precision floating-point scalar.
/// @see gtc_type_precision
typedef float64 f64;
/// Single-precision floating-point vector of 1 component.
/// @see gtc_type_precision
typedef vec<1, float, defaultp> fvec1;
/// Single-precision floating-point vector of 2 components.
/// @see gtc_type_precision
typedef vec<2, float, defaultp> fvec2;
/// Single-precision floating-point vector of 3 components.
/// @see gtc_type_precision
typedef vec<3, float, defaultp> fvec3;
/// Single-precision floating-point vector of 4 components.
/// @see gtc_type_precision
typedef vec<4, float, defaultp> fvec4;
/// Single-precision floating-point vector of 1 component.
/// @see gtc_type_precision
typedef vec<1, f32, defaultp> f32vec1;
/// Single-precision floating-point vector of 2 components.
/// @see gtc_type_precision
typedef vec<2, f32, defaultp> f32vec2;
/// Single-precision floating-point vector of 3 components.
/// @see gtc_type_precision
typedef vec<3, f32, defaultp> f32vec3;
/// Single-precision floating-point vector of 4 components.
/// @see gtc_type_precision
typedef vec<4, f32, defaultp> f32vec4;
/// Double-precision floating-point vector of 1 component.
/// @see gtc_type_precision
typedef vec<1, f64, defaultp> f64vec1;
/// Double-precision floating-point vector of 2 components.
/// @see gtc_type_precision
typedef vec<2, f64, defaultp> f64vec2;
/// Double-precision floating-point vector of 3 components.
/// @see gtc_type_precision
typedef vec<3, f64, defaultp> f64vec3;
/// Double-precision floating-point vector of 4 components.
/// @see gtc_type_precision
typedef vec<4, f64, defaultp> f64vec4;
//////////////////////
// Float matrix types
/// Single-precision floating-point 1x1 matrix.
/// @see gtc_type_precision
//typedef detail::tmat1x1<f32> fmat1;
/// Single-precision floating-point 2x2 matrix.
/// @see gtc_type_precision
typedef mat<2, 2, f32, defaultp> fmat2;
/// Single-precision floating-point 3x3 matrix.
/// @see gtc_type_precision
typedef mat<3, 3, f32, defaultp> fmat3;
/// Single-precision floating-point 4x4 matrix.
/// @see gtc_type_precision
typedef mat<4, 4, f32, defaultp> fmat4;
/// Single-precision floating-point 1x1 matrix.
/// @see gtc_type_precision
//typedef f32 fmat1x1;
/// Single-precision floating-point 2x2 matrix.
/// @see gtc_type_precision
typedef mat<2, 2, f32, defaultp> fmat2x2;
/// Single-precision floating-point 2x3 matrix.
/// @see gtc_type_precision
typedef mat<2, 3, f32, defaultp> fmat2x3;
/// Single-precision floating-point 2x4 matrix.
/// @see gtc_type_precision
typedef mat<2, 4, f32, defaultp> fmat2x4;
/// Single-precision floating-point 3x2 matrix.
/// @see gtc_type_precision
typedef mat<3, 2, f32, defaultp> fmat3x2;
/// Single-precision floating-point 3x3 matrix.
/// @see gtc_type_precision
typedef mat<3, 3, f32, defaultp> fmat3x3;
/// Single-precision floating-point 3x4 matrix.
/// @see gtc_type_precision
typedef mat<3, 4, f32, defaultp> fmat3x4;
/// Single-precision floating-point 4x2 matrix.
/// @see gtc_type_precision
typedef mat<4, 2, f32, defaultp> fmat4x2;
/// Single-precision floating-point 4x3 matrix.
/// @see gtc_type_precision
typedef mat<4, 3, f32, defaultp> fmat4x3;
/// Single-precision floating-point 4x4 matrix.
/// @see gtc_type_precision
typedef mat<4, 4, f32, defaultp> fmat4x4;
/// Single-precision floating-point 1x1 matrix.
/// @see gtc_type_precision
//typedef detail::tmat1x1<f32, defaultp> f32mat1;
/// Single-precision floating-point 2x2 matrix.
/// @see gtc_type_precision
typedef mat<2, 2, f32, defaultp> f32mat2;
/// Single-precision floating-point 3x3 matrix.
/// @see gtc_type_precision
typedef mat<3, 3, f32, defaultp> f32mat3;
/// Single-precision floating-point 4x4 matrix.
/// @see gtc_type_precision
typedef mat<4, 4, f32, defaultp> f32mat4;
/// Single-precision floating-point 1x1 matrix.
/// @see gtc_type_precision
//typedef f32 f32mat1x1;
/// Single-precision floating-point 2x2 matrix.
/// @see gtc_type_precision
typedef mat<2, 2, f32, defaultp> f32mat2x2;
/// Single-precision floating-point 2x3 matrix.
/// @see gtc_type_precision
typedef mat<2, 3, f32, defaultp> f32mat2x3;
/// Single-precision floating-point 2x4 matrix.
/// @see gtc_type_precision
typedef mat<2, 4, f32, defaultp> f32mat2x4;
/// Single-precision floating-point 3x2 matrix.
/// @see gtc_type_precision
typedef mat<3, 2, f32, defaultp> f32mat3x2;
/// Single-precision floating-point 3x3 matrix.
/// @see gtc_type_precision
typedef mat<3, 3, f32, defaultp> f32mat3x3;
/// Single-precision floating-point 3x4 matrix.
/// @see gtc_type_precision
typedef mat<3, 4, f32, defaultp> f32mat3x4;
/// Single-precision floating-point 4x2 matrix.
/// @see gtc_type_precision
typedef mat<4, 2, f32, defaultp> f32mat4x2;
/// Single-precision floating-point 4x3 matrix.
/// @see gtc_type_precision
typedef mat<4, 3, f32, defaultp> f32mat4x3;
/// Single-precision floating-point 4x4 matrix.
/// @see gtc_type_precision
typedef mat<4, 4, f32, defaultp> f32mat4x4;
/// Double-precision floating-point 1x1 matrix.
/// @see gtc_type_precision
//typedef detail::tmat1x1<f64, defaultp> f64mat1;
/// Double-precision floating-point 2x2 matrix.
/// @see gtc_type_precision
typedef mat<2, 2, f64, defaultp> f64mat2;
/// Double-precision floating-point 3x3 matrix.
/// @see gtc_type_precision
typedef mat<3, 3, f64, defaultp> f64mat3;
/// Double-precision floating-point 4x4 matrix.
/// @see gtc_type_precision
typedef mat<4, 4, f64, defaultp> f64mat4;
/// Double-precision floating-point 1x1 matrix.
/// @see gtc_type_precision
//typedef f64 f64mat1x1;
/// Double-precision floating-point 2x2 matrix.
/// @see gtc_type_precision
typedef mat<2, 2, f64, defaultp> f64mat2x2;
/// Double-precision floating-point 2x3 matrix.
/// @see gtc_type_precision
typedef mat<2, 3, f64, defaultp> f64mat2x3;
/// Double-precision floating-point 2x4 matrix.
/// @see gtc_type_precision
typedef mat<2, 4, f64, defaultp> f64mat2x4;
/// Double-precision floating-point 3x2 matrix.
/// @see gtc_type_precision
typedef mat<3, 2, f64, defaultp> f64mat3x2;
/// Double-precision floating-point 3x3 matrix.
/// @see gtc_type_precision
typedef mat<3, 3, f64, defaultp> f64mat3x3;
/// Double-precision floating-point 3x4 matrix.
/// @see gtc_type_precision
typedef mat<3, 4, f64, defaultp> f64mat3x4;
/// Double-precision floating-point 4x2 matrix.
/// @see gtc_type_precision
typedef mat<4, 2, f64, defaultp> f64mat4x2;
/// Double-precision floating-point 4x3 matrix.
/// @see gtc_type_precision
typedef mat<4, 3, f64, defaultp> f64mat4x3;
/// Double-precision floating-point 4x4 matrix.
/// @see gtc_type_precision
typedef mat<4, 4, f64, defaultp> f64mat4x4;
//////////////////////////
// Quaternion types
/// Single-precision floating-point quaternion.
/// @see gtc_type_precision
typedef tquat<f32, defaultp> f32quat;
/// Double-precision floating-point quaternion.
/// @see gtc_type_precision
typedef tquat<f64, defaultp> f64quat;
/// @}
}//namespace glm
#include "type_precision.inl"

View file

@ -0,0 +1,7 @@
/// @ref gtc_swizzle
/// @file glm/gtc/swizzle.inl
namespace glm
{
}

148
glm/gtc/type_ptr.hpp Normal file
View file

@ -0,0 +1,148 @@
/// @ref gtc_type_ptr
/// @file glm/gtc/type_ptr.hpp
///
/// @see core (dependence)
/// @see gtc_quaternion (dependence)
///
/// @defgroup gtc_type_ptr GLM_GTC_type_ptr
/// @ingroup gtc
///
/// @brief Handles the interaction between pointers and vector, matrix types.
///
/// This extension defines an overloaded function, glm::value_ptr, which
/// takes any of the \ref core_template "core template types". It returns
/// a pointer to the memory layout of the object. Matrix types store their values
/// in column-major order.
///
/// This is useful for uploading data to matrices or copying data to buffer objects.
///
/// Example:
/// @code
/// #include <glm/glm.hpp>
/// #include <glm/gtc/type_ptr.hpp>
///
/// glm::vec3 aVector(3);
/// glm::mat4 someMatrix(1.0);
///
/// glUniform3fv(uniformLoc, 1, glm::value_ptr(aVector));
/// glUniformMatrix4fv(uniformMatrixLoc, 1, GL_FALSE, glm::value_ptr(someMatrix));
/// @endcode
///
/// <glm/gtc/type_ptr.hpp> need to be included to use these functionalities.
#pragma once
// Dependency:
#include "../gtc/quaternion.hpp"
#include "../vec2.hpp"
#include "../vec3.hpp"
#include "../vec4.hpp"
#include "../mat2x2.hpp"
#include "../mat2x3.hpp"
#include "../mat2x4.hpp"
#include "../mat3x2.hpp"
#include "../mat3x3.hpp"
#include "../mat3x4.hpp"
#include "../mat4x2.hpp"
#include "../mat4x3.hpp"
#include "../mat4x4.hpp"
#include <cstring>
#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
# pragma message("GLM: GLM_GTC_type_ptr extension included")
#endif
namespace glm
{
/// @addtogroup gtc_type_ptr
/// @{
/// Return the constant address to the data of the input parameter.
/// @see gtc_type_ptr
template<typename genType>
GLM_FUNC_DECL typename genType::value_type const * value_ptr(genType const& v);
/// Build a vector from a pointer.
/// @see gtc_type_ptr
template<typename T>
GLM_FUNC_DECL vec<2, T, defaultp> make_vec2(T const * const ptr);
/// Build a vector from a pointer.
/// @see gtc_type_ptr
template<typename T>
GLM_FUNC_DECL vec<3, T, defaultp> make_vec3(T const * const ptr);
/// Build a vector from a pointer.
/// @see gtc_type_ptr
template<typename T>
GLM_FUNC_DECL vec<4, T, defaultp> make_vec4(T const * const ptr);
/// Build a matrix from a pointer.
/// @see gtc_type_ptr
template<typename T>
GLM_FUNC_DECL mat<2, 2, T, defaultp> make_mat2x2(T const * const ptr);
/// Build a matrix from a pointer.
/// @see gtc_type_ptr
template<typename T>
GLM_FUNC_DECL mat<2, 3, T, defaultp> make_mat2x3(T const * const ptr);
/// Build a matrix from a pointer.
/// @see gtc_type_ptr
template<typename T>
GLM_FUNC_DECL mat<2, 4, T, defaultp> make_mat2x4(T const * const ptr);
/// Build a matrix from a pointer.
/// @see gtc_type_ptr
template<typename T>
GLM_FUNC_DECL mat<3, 2, T, defaultp> make_mat3x2(T const * const ptr);
/// Build a matrix from a pointer.
/// @see gtc_type_ptr
template<typename T>
GLM_FUNC_DECL mat<3, 3, T, defaultp> make_mat3x3(T const * const ptr);
/// Build a matrix from a pointer.
/// @see gtc_type_ptr
template<typename T>
GLM_FUNC_DECL mat<3, 4, T, defaultp> make_mat3x4(T const * const ptr);
/// Build a matrix from a pointer.
/// @see gtc_type_ptr
template<typename T>
GLM_FUNC_DECL mat<4, 2, T, defaultp> make_mat4x2(T const * const ptr);
/// Build a matrix from a pointer.
/// @see gtc_type_ptr
template<typename T>
GLM_FUNC_DECL mat<4, 3, T, defaultp> make_mat4x3(T const * const ptr);
/// Build a matrix from a pointer.
/// @see gtc_type_ptr
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> make_mat4x4(T const * const ptr);
/// Build a matrix from a pointer.
/// @see gtc_type_ptr
template<typename T>
GLM_FUNC_DECL mat<2, 2, T, defaultp> make_mat2(T const * const ptr);
/// Build a matrix from a pointer.
/// @see gtc_type_ptr
template<typename T>
GLM_FUNC_DECL mat<3, 3, T, defaultp> make_mat3(T const * const ptr);
/// Build a matrix from a pointer.
/// @see gtc_type_ptr
template<typename T>
GLM_FUNC_DECL mat<4, 4, T, defaultp> make_mat4(T const * const ptr);
/// Build a quaternion from a pointer.
/// @see gtc_type_ptr
template<typename T>
GLM_FUNC_DECL tquat<T, defaultp> make_quat(T const * const ptr);
/// @}
}//namespace glm
#include "type_ptr.inl"

375
glm/gtc/type_ptr.inl Normal file
View file

@ -0,0 +1,375 @@
/// @ref gtc_type_ptr
/// @file glm/gtc/type_ptr.inl
#include <cstring>
namespace glm
{
/// @addtogroup gtc_type_ptr
/// @{
/// Return the constant address to the data of the vector input.
/// @see gtc_type_ptr
template<typename T, precision P>
GLM_FUNC_QUALIFIER T const* value_ptr(vec<2, T, P> const& v)
{
return &(v.x);
}
//! Return the address to the data of the vector input.
/// @see gtc_type_ptr
template<typename T, precision P>
GLM_FUNC_QUALIFIER T* value_ptr(vec<2, T, P>& v)
{
return &(v.x);
}
/// Return the constant address to the data of the vector input.
/// @see gtc_type_ptr
template<typename T, precision P>
GLM_FUNC_QUALIFIER T const * value_ptr(vec<3, T, P> const& v)
{
return &(v.x);
}
//! Return the address to the data of the vector input.
/// @see gtc_type_ptr
template<typename T, precision P>
GLM_FUNC_QUALIFIER T* value_ptr(vec<3, T, P>& v)
{
return &(v.x);
}
/// Return the constant address to the data of the vector input.
/// @see gtc_type_ptr
template<typename T, precision P>
GLM_FUNC_QUALIFIER T const* value_ptr(vec<4, T, P> const& v)
{
return &(v.x);
}
//! Return the address to the data of the vector input.
//! From GLM_GTC_type_ptr extension.
template<typename T, precision P>
GLM_FUNC_QUALIFIER T* value_ptr(vec<4, T, P>& v)
{
return &(v.x);
}
/// Return the constant address to the data of the matrix input.
/// @see gtc_type_ptr
template<typename T, precision P>
GLM_FUNC_QUALIFIER T const* value_ptr(mat<2, 2, T, P> const& m)
{
return &(m[0].x);
}
//! Return the address to the data of the matrix input.
/// @see gtc_type_ptr
template<typename T, precision P>
GLM_FUNC_QUALIFIER T* value_ptr(mat<2, 2, T, P>& m)
{
return &(m[0].x);
}
/// Return the constant address to the data of the matrix input.
/// @see gtc_type_ptr
template<typename T, precision P>
GLM_FUNC_QUALIFIER T const* value_ptr(mat<3, 3, T, P> const& m)
{
return &(m[0].x);
}
//! Return the address to the data of the matrix input.
/// @see gtc_type_ptr
template<typename T, precision P>
GLM_FUNC_QUALIFIER T* value_ptr(mat<3, 3, T, P>& m)
{
return &(m[0].x);
}
/// Return the constant address to the data of the matrix input.
/// @see gtc_type_ptr
template<typename T, precision P>
GLM_FUNC_QUALIFIER T const* value_ptr(mat<4, 4, T, P> const& m)
{
return &(m[0].x);
}
//! Return the address to the data of the matrix input.
//! From GLM_GTC_type_ptr extension.
template<typename T, precision P>
GLM_FUNC_QUALIFIER T* value_ptr(mat<4, 4, T, P>& m)
{
return &(m[0].x);
}
/// Return the constant address to the data of the matrix input.
/// @see gtc_type_ptr
template<typename T, precision P>
GLM_FUNC_QUALIFIER T const* value_ptr(mat<2, 3, T, P> const& m)
{
return &(m[0].x);
}
//! Return the address to the data of the matrix input.
/// @see gtc_type_ptr
template<typename T, precision P>
GLM_FUNC_QUALIFIER T* value_ptr(mat<2, 3, T, P>& m)
{
return &(m[0].x);
}
/// Return the constant address to the data of the matrix input.
/// @see gtc_type_ptr
template<typename T, precision P>
GLM_FUNC_QUALIFIER T const* value_ptr(mat<3, 2, T, P> const& m)
{
return &(m[0].x);
}
//! Return the address to the data of the matrix input.
/// @see gtc_type_ptr
template<typename T, precision P>
GLM_FUNC_QUALIFIER T* value_ptr(mat<3, 2, T, P>& m)
{
return &(m[0].x);
}
/// Return the constant address to the data of the matrix input.
/// @see gtc_type_ptr
template<typename T, precision P>
GLM_FUNC_QUALIFIER T const* value_ptr(mat<2, 4, T, P> const& m)
{
return &(m[0].x);
}
//! Return the address to the data of the matrix input.
/// @see gtc_type_ptr
template<typename T, precision P>
GLM_FUNC_QUALIFIER T* value_ptr(mat<2, 4, T, P>& m)
{
return &(m[0].x);
}
/// Return the constant address to the data of the matrix input.
/// @see gtc_type_ptr
template<typename T, precision P>
GLM_FUNC_QUALIFIER T const* value_ptr(mat<4, 2, T, P> const& m)
{
return &(m[0].x);
}
//! Return the address to the data of the matrix input.
/// @see gtc_type_ptr
template<typename T, precision P>
GLM_FUNC_QUALIFIER T* value_ptr(mat<4, 2, T, P>& m)
{
return &(m[0].x);
}
/// Return the constant address to the data of the matrix input.
/// @see gtc_type_ptr
template<typename T, precision P>
GLM_FUNC_QUALIFIER T const* value_ptr(mat<3, 4, T, P> const& m)
{
return &(m[0].x);
}
//! Return the address to the data of the matrix input.
/// @see gtc_type_ptr
template<typename T, precision P>
GLM_FUNC_QUALIFIER T* value_ptr(mat<3, 4, T, P>& m)
{
return &(m[0].x);
}
/// Return the constant address to the data of the matrix input.
/// @see gtc_type_ptr
template<typename T, precision P>
GLM_FUNC_QUALIFIER T const* value_ptr(mat<4, 3, T, P> const& m)
{
return &(m[0].x);
}
/// Return the address to the data of the matrix input.
/// @see gtc_type_ptr
template<typename T, precision P>
GLM_FUNC_QUALIFIER T * value_ptr(mat<4, 3, T, P>& m)
{
return &(m[0].x);
}
/// Return the constant address to the data of the input parameter.
/// @see gtc_type_ptr
template<typename T, precision P>
GLM_FUNC_QUALIFIER T const * value_ptr(tquat<T, P> const& q)
{
return &(q[0]);
}
/// Return the address to the data of the quaternion input.
/// @see gtc_type_ptr
template<typename T, precision P>
GLM_FUNC_QUALIFIER T* value_ptr(tquat<T, P>& q)
{
return &(q[0]);
}
/// Build a vector from a pointer.
/// @see gtc_type_ptr
template<typename T>
GLM_FUNC_QUALIFIER vec<2, T, defaultp> make_vec2(T const *const ptr)
{
vec<2, T, defaultp> Result;
memcpy(value_ptr(Result), ptr, sizeof(vec<2, T, defaultp>));
return Result;
}
/// Build a vector from a pointer.
/// @see gtc_type_ptr
template<typename T>
GLM_FUNC_QUALIFIER vec<3, T, defaultp> make_vec3(T const *const ptr)
{
vec<3, T, defaultp> Result;
memcpy(value_ptr(Result), ptr, sizeof(vec<3, T, defaultp>));
return Result;
}
/// Build a vector from a pointer.
/// @see gtc_type_ptr
template<typename T>
GLM_FUNC_QUALIFIER vec<4, T, defaultp> make_vec4(T const *const ptr)
{
vec<4, T, defaultp> Result;
memcpy(value_ptr(Result), ptr, sizeof(vec<4, T, defaultp>));
return Result;
}
/// Build a matrix from a pointer.
/// @see gtc_type_ptr
template<typename T>
GLM_FUNC_QUALIFIER mat<2, 2, T, defaultp> make_mat2x2(T const *const ptr)
{
mat<2, 2, T, defaultp> Result;
memcpy(value_ptr(Result), ptr, sizeof(mat<2, 2, T, defaultp>));
return Result;
}
/// Build a matrix from a pointer.
/// @see gtc_type_ptr
template<typename T>
GLM_FUNC_QUALIFIER mat<2, 3, T, defaultp> make_mat2x3(T const *const ptr)
{
mat<2, 3, T, defaultp> Result;
memcpy(value_ptr(Result), ptr, sizeof(mat<2, 3, T, defaultp>));
return Result;
}
/// Build a matrix from a pointer.
/// @see gtc_type_ptr
template<typename T>
GLM_FUNC_QUALIFIER mat<2, 4, T, defaultp> make_mat2x4(T const *const ptr)
{
mat<2, 4, T, defaultp> Result;
memcpy(value_ptr(Result), ptr, sizeof(mat<2, 4, T, defaultp>));
return Result;
}
/// Build a matrix from a pointer.
/// @see gtc_type_ptr
template<typename T>
GLM_FUNC_QUALIFIER mat<3, 2, T, defaultp> make_mat3x2(T const *const ptr)
{
mat<3, 2, T, defaultp> Result;
memcpy(value_ptr(Result), ptr, sizeof(mat<3, 2, T, defaultp>));
return Result;
}
//! Build a matrix from a pointer.
/// @see gtc_type_ptr
template<typename T>
GLM_FUNC_QUALIFIER mat<3, 3, T, defaultp> make_mat3x3(T const *const ptr)
{
mat<3, 3, T, defaultp> Result;
memcpy(value_ptr(Result), ptr, sizeof(mat<3, 3, T, defaultp>));
return Result;
}
//! Build a matrix from a pointer.
/// @see gtc_type_ptr
template<typename T>
GLM_FUNC_QUALIFIER mat<3, 4, T, defaultp> make_mat3x4(T const *const ptr)
{
mat<3, 4, T, defaultp> Result;
memcpy(value_ptr(Result), ptr, sizeof(mat<3, 4, T, defaultp>));
return Result;
}
//! Build a matrix from a pointer.
/// @see gtc_type_ptr
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 2, T, defaultp> make_mat4x2(T const *const ptr)
{
mat<4, 2, T, defaultp> Result;
memcpy(value_ptr(Result), ptr, sizeof(mat<4, 2, T, defaultp>));
return Result;
}
//! Build a matrix from a pointer.
/// @see gtc_type_ptr
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 3, T, defaultp> make_mat4x3(T const *const ptr)
{
mat<4, 3, T, defaultp> Result;
memcpy(value_ptr(Result), ptr, sizeof(mat<4, 3, T, defaultp>));
return Result;
}
//! Build a matrix from a pointer.
/// @see gtc_type_ptr
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> make_mat4x4(T const *const ptr)
{
mat<4, 4, T, defaultp> Result;
memcpy(value_ptr(Result), ptr, sizeof(mat<4, 4, T, defaultp>));
return Result;
}
//! Build a matrix from a pointer.
/// @see gtc_type_ptr
template<typename T>
GLM_FUNC_QUALIFIER mat<2, 2, T, defaultp> make_mat2(T const *const ptr)
{
return make_mat2x2(ptr);
}
//! Build a matrix from a pointer.
/// @see gtc_type_ptr
template<typename T>
GLM_FUNC_QUALIFIER mat<3, 3, T, defaultp> make_mat3(T const *const ptr)
{
return make_mat3x3(ptr);
}
//! Build a matrix from a pointer.
/// @see gtc_type_ptr
template<typename T>
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> make_mat4(T const *const ptr)
{
return make_mat4x4(ptr);
}
//! Build a quaternion from a pointer.
/// @see gtc_type_ptr
template<typename T>
GLM_FUNC_QUALIFIER tquat<T, defaultp> make_quat(T const *const ptr)
{
tquat<T, defaultp> Result;
memcpy(value_ptr(Result), ptr, sizeof(tquat<T, defaultp>));
return Result;
}
/// @}
}//namespace glm

63
glm/gtc/ulp.hpp Normal file
View file

@ -0,0 +1,63 @@
/// @ref gtc_ulp
/// @file glm/gtc/ulp.hpp
///
/// @see core (dependence)
///
/// @defgroup gtc_ulp GLM_GTC_ulp
/// @ingroup gtc
///
/// @brief Allow the measurement of the accuracy of a function against a reference
/// implementation. This extension works on floating-point data and provide results
/// in ULP.
/// <glm/gtc/ulp.hpp> need to be included to use these features.
#pragma once
// Dependencies
#include "../detail/setup.hpp"
#include "../detail/precision.hpp"
#include "../detail/type_int.hpp"
#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
# pragma message("GLM: GLM_GTC_ulp extension included")
#endif
namespace glm
{
/// @addtogroup gtc_ulp
/// @{
/// Return the next ULP value(s) after the input value(s).
/// @see gtc_ulp
template<typename genType>
GLM_FUNC_DECL genType next_float(genType const & x);
/// Return the previous ULP value(s) before the input value(s).
/// @see gtc_ulp
template<typename genType>
GLM_FUNC_DECL genType prev_float(genType const & x);
/// Return the value(s) ULP distance after the input value(s).
/// @see gtc_ulp
template<typename genType>
GLM_FUNC_DECL genType next_float(genType const & x, uint const & Distance);
/// Return the value(s) ULP distance before the input value(s).
/// @see gtc_ulp
template<typename genType>
GLM_FUNC_DECL genType prev_float(genType const & x, uint const & Distance);
/// Return the distance in the number of ULP between 2 scalars.
/// @see gtc_ulp
template<typename T>
GLM_FUNC_DECL uint float_distance(T const & x, T const & y);
/// Return the distance in the number of ULP between 2 vectors.
/// @see gtc_ulp
template<typename T, template<int, typename> class vecType>
GLM_FUNC_DECL vecType<2, uint> float_distance(vecType<2, T> const & x, vecType<2, T> const & y);
/// @}
}// namespace glm
#include "ulp.inl"

321
glm/gtc/ulp.inl Normal file
View file

@ -0,0 +1,321 @@
/// @ref gtc_ulp
/// @file glm/gtc/ulp.inl
///
/// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
///
/// Developed at SunPro, a Sun Microsystems, Inc. business.
/// Permission to use, copy, modify, and distribute this
/// software is freely granted, provided that this notice
/// is preserved.
#include "../detail/type_int.hpp"
#include <cmath>
#include <cfloat>
#include <limits>
#if(GLM_COMPILER & GLM_COMPILER_VC)
# pragma warning(push)
# pragma warning(disable : 4127)
#endif
typedef union
{
float value;
/* FIXME: Assumes 32 bit int. */
unsigned int word;
} ieee_float_shape_type;
typedef union
{
double value;
struct
{
glm::detail::int32 lsw;
glm::detail::int32 msw;
} parts;
} ieee_double_shape_type;
#define GLM_EXTRACT_WORDS(ix0,ix1,d) \
do { \
ieee_double_shape_type ew_u; \
ew_u.value = (d); \
(ix0) = ew_u.parts.msw; \
(ix1) = ew_u.parts.lsw; \
} while (0)
#define GLM_GET_FLOAT_WORD(i,d) \
do { \
ieee_float_shape_type gf_u; \
gf_u.value = (d); \
(i) = gf_u.word; \
} while (0)
#define GLM_SET_FLOAT_WORD(d,i) \
do { \
ieee_float_shape_type sf_u; \
sf_u.word = (i); \
(d) = sf_u.value; \
} while (0)
#define GLM_INSERT_WORDS(d,ix0,ix1) \
do { \
ieee_double_shape_type iw_u; \
iw_u.parts.msw = (ix0); \
iw_u.parts.lsw = (ix1); \
(d) = iw_u.value; \
} while (0)
namespace glm{
namespace detail
{
GLM_FUNC_QUALIFIER float nextafterf(float x, float y)
{
volatile float t;
glm::detail::int32 hx, hy, ix, iy;
GLM_GET_FLOAT_WORD(hx, x);
GLM_GET_FLOAT_WORD(hy, y);
ix = hx&0x7fffffff; // |x|
iy = hy&0x7fffffff; // |y|
if((ix>0x7f800000) || // x is nan
(iy>0x7f800000)) // y is nan
return x+y;
if(x==y) return y; // x=y, return y
if(ix==0) { // x == 0
GLM_SET_FLOAT_WORD(x,(hy&0x80000000)|1);// return +-minsubnormal
t = x*x;
if(t==x) return t; else return x; // raise underflow flag
}
if(hx>=0) { // x > 0
if(hx>hy) { // x > y, x -= ulp
hx -= 1;
} else { // x < y, x += ulp
hx += 1;
}
} else { // x < 0
if(hy>=0||hx>hy){ // x < y, x -= ulp
hx -= 1;
} else { // x > y, x += ulp
hx += 1;
}
}
hy = hx&0x7f800000;
if(hy>=0x7f800000) return x+x; // overflow
if(hy<0x00800000) { // underflow
t = x*x;
if(t!=x) { // raise underflow flag
GLM_SET_FLOAT_WORD(y,hx);
return y;
}
}
GLM_SET_FLOAT_WORD(x,hx);
return x;
}
GLM_FUNC_QUALIFIER double nextafter(double x, double y)
{
volatile double t;
glm::detail::int32 hx, hy, ix, iy;
glm::detail::uint32 lx, ly;
GLM_EXTRACT_WORDS(hx, lx, x);
GLM_EXTRACT_WORDS(hy, ly, y);
ix = hx & 0x7fffffff; // |x|
iy = hy & 0x7fffffff; // |y|
if(((ix>=0x7ff00000)&&((ix-0x7ff00000)|lx)!=0) || // x is nan
((iy>=0x7ff00000)&&((iy-0x7ff00000)|ly)!=0)) // y is nan
return x+y;
if(x==y) return y; // x=y, return y
if((ix|lx)==0) { // x == 0
GLM_INSERT_WORDS(x, hy & 0x80000000, 1); // return +-minsubnormal
t = x*x;
if(t==x) return t; else return x; // raise underflow flag
}
if(hx>=0) { // x > 0
if(hx>hy||((hx==hy)&&(lx>ly))) { // x > y, x -= ulp
if(lx==0) hx -= 1;
lx -= 1;
} else { // x < y, x += ulp
lx += 1;
if(lx==0) hx += 1;
}
} else { // x < 0
if(hy>=0||hx>hy||((hx==hy)&&(lx>ly))){// x < y, x -= ulp
if(lx==0) hx -= 1;
lx -= 1;
} else { // x > y, x += ulp
lx += 1;
if(lx==0) hx += 1;
}
}
hy = hx&0x7ff00000;
if(hy>=0x7ff00000) return x+x; // overflow
if(hy<0x00100000) { // underflow
t = x*x;
if(t!=x) { // raise underflow flag
GLM_INSERT_WORDS(y,hx,lx);
return y;
}
}
GLM_INSERT_WORDS(x,hx,lx);
return x;
}
}//namespace detail
}//namespace glm
#if(GLM_COMPILER & GLM_COMPILER_VC)
# pragma warning(pop)
#endif
namespace glm
{
template<>
GLM_FUNC_QUALIFIER float next_float(float const & x)
{
# if GLM_HAS_CXX11_STL
return std::nextafter(x, std::numeric_limits<float>::max());
# elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS)))
return detail::nextafterf(x, FLT_MAX);
# elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID)
return __builtin_nextafterf(x, FLT_MAX);
# else
return nextafterf(x, FLT_MAX);
# endif
}
template<>
GLM_FUNC_QUALIFIER double next_float(double const & x)
{
# if GLM_HAS_CXX11_STL
return std::nextafter(x, std::numeric_limits<double>::max());
# elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS)))
return detail::nextafter(x, std::numeric_limits<double>::max());
# elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID)
return __builtin_nextafter(x, FLT_MAX);
# else
return nextafter(x, DBL_MAX);
# endif
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, T, P> next_float(vecType<L, T, P> const & x)
{
vecType<L, T, P> Result(uninitialize);
for(length_t i = 0, n = Result.length(); i < n; ++i)
Result[i] = next_float(x[i]);
return Result;
}
GLM_FUNC_QUALIFIER float prev_float(float const & x)
{
# if GLM_HAS_CXX11_STL
return std::nextafter(x, std::numeric_limits<float>::min());
# elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS)))
return detail::nextafterf(x, FLT_MIN);
# elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID)
return __builtin_nextafterf(x, FLT_MIN);
# else
return nextafterf(x, FLT_MIN);
# endif
}
GLM_FUNC_QUALIFIER double prev_float(double const & x)
{
# if GLM_HAS_CXX11_STL
return std::nextafter(x, std::numeric_limits<double>::min());
# elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS)))
return _nextafter(x, DBL_MIN);
# elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID)
return __builtin_nextafter(x, DBL_MIN);
# else
return nextafter(x, DBL_MIN);
# endif
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, T, P> prev_float(vecType<L, T, P> const & x)
{
vecType<L, T, P> Result(uninitialize);
for(length_t i = 0, n = Result.length(); i < n; ++i)
Result[i] = prev_float(x[i]);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER T next_float(T const & x, uint const & ulps)
{
T temp = x;
for(uint i = 0; i < ulps; ++i)
temp = next_float(temp);
return temp;
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, T, P> next_float(vecType<L, T, P> const & x, vecType<L, uint, P> const & ulps)
{
vecType<L, T, P> Result(uninitialize);
for(length_t i = 0, n = Result.length(); i < n; ++i)
Result[i] = next_float(x[i], ulps[i]);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER T prev_float(T const & x, uint const & ulps)
{
T temp = x;
for(uint i = 0; i < ulps; ++i)
temp = prev_float(temp);
return temp;
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, T, P> prev_float(vecType<L, T, P> const & x, vecType<L, uint, P> const & ulps)
{
vecType<L, T, P> Result(uninitialize);
for(length_t i = 0, n = Result.length(); i < n; ++i)
Result[i] = prev_float(x[i], ulps[i]);
return Result;
}
template<typename T>
GLM_FUNC_QUALIFIER uint float_distance(T const & x, T const & y)
{
uint ulp = 0;
if(x < y)
{
T temp = x;
while(temp != y)// && ulp < std::numeric_limits<std::size_t>::max())
{
++ulp;
temp = next_float(temp);
}
}
else if(y < x)
{
T temp = y;
while(temp != x)// && ulp < std::numeric_limits<std::size_t>::max())
{
++ulp;
temp = next_float(temp);
}
}
else // ==
{
}
return ulp;
}
template<length_t L, typename T, precision P, template<length_t, typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<L, uint, P> float_distance(vecType<L, T, P> const & x, vecType<L, T, P> const & y)
{
vecType<L, uint, P> Result(uninitialize);
for(length_t i = 0, n = Result.length(); i < n; ++i)
Result[i] = float_distance(x[i], y[i]);
return Result;
}
}//namespace glm

164
glm/gtc/vec1.hpp Normal file
View file

@ -0,0 +1,164 @@
/// @ref gtc_vec1
/// @file glm/gtc/vec1.hpp
///
/// @see core (dependence)
///
/// @defgroup gtc_vec1 GLM_GTC_vec1
/// @ingroup gtc
///
/// @brief Add vec1, ivec1, uvec1 and bvec1 types.
/// <glm/gtc/vec1.hpp> need to be included to use these functionalities.
#pragma once
// Dependency:
#include "../glm.hpp"
#include "../detail/type_vec1.hpp"
#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
# pragma message("GLM: GLM_GTC_vec1 extension included")
#endif
namespace glm
{
/// 1 component vector of high precision floating-point numbers.
/// There is no guarantee on the actual precision.
/// @see gtc_vec1 extension.
typedef highp_vec1_t highp_vec1;
/// 1 component vector of medium precision floating-point numbers.
/// There is no guarantee on the actual precision.
/// @see gtc_vec1 extension.
typedef mediump_vec1_t mediump_vec1;
/// 1 component vector of low precision floating-point numbers.
/// There is no guarantee on the actual precision.
/// @see gtc_vec1 extension.
typedef lowp_vec1_t lowp_vec1;
/// 1 component vector of high precision floating-point numbers.
/// There is no guarantee on the actual precision.
/// @see gtc_vec1 extension.
typedef highp_dvec1_t highp_dvec1;
/// 1 component vector of medium precision floating-point numbers.
/// There is no guarantee on the actual precision.
/// @see gtc_vec1 extension.
typedef mediump_dvec1_t mediump_dvec1;
/// 1 component vector of low precision floating-point numbers.
/// There is no guarantee on the actual precision.
/// @see gtc_vec1 extension.
typedef lowp_dvec1_t lowp_dvec1;
/// 1 component vector of high precision signed integer numbers.
/// There is no guarantee on the actual precision.
/// @see gtc_vec1 extension.
typedef highp_ivec1_t highp_ivec1;
/// 1 component vector of medium precision signed integer numbers.
/// There is no guarantee on the actual precision.
/// @see gtc_vec1 extension.
typedef mediump_ivec1_t mediump_ivec1;
/// 1 component vector of low precision signed integer numbers.
/// There is no guarantee on the actual precision.
/// @see gtc_vec1 extension.
typedef lowp_ivec1_t lowp_ivec1;
/// 1 component vector of high precision unsigned integer numbers.
/// There is no guarantee on the actual precision.
/// @see gtc_vec1 extension.
typedef highp_uvec1_t highp_uvec1;
/// 1 component vector of medium precision unsigned integer numbers.
/// There is no guarantee on the actual precision.
/// @see gtc_vec1 extension.
typedef mediump_uvec1_t mediump_uvec1;
/// 1 component vector of low precision unsigned integer numbers.
/// There is no guarantee on the actual precision.
/// @see gtc_vec1 extension.
typedef lowp_uvec1_t lowp_uvec1;
/// 1 component vector of high precision boolean.
/// There is no guarantee on the actual precision.
/// @see gtc_vec1 extension.
typedef highp_bvec1_t highp_bvec1;
/// 1 component vector of medium precision boolean.
/// There is no guarantee on the actual precision.
/// @see gtc_vec1 extension.
typedef mediump_bvec1_t mediump_bvec1;
/// 1 component vector of low precision boolean.
/// There is no guarantee on the actual precision.
/// @see gtc_vec1 extension.
typedef lowp_bvec1_t lowp_bvec1;
//////////////////////////
// vec1 definition
#if(defined(GLM_PRECISION_HIGHP_BOOL))
typedef highp_bvec1 bvec1;
#elif(defined(GLM_PRECISION_MEDIUMP_BOOL))
typedef mediump_bvec1 bvec1;
#elif(defined(GLM_PRECISION_LOWP_BOOL))
typedef lowp_bvec1 bvec1;
#else
/// 1 component vector of boolean.
/// @see gtc_vec1 extension.
typedef highp_bvec1 bvec1;
#endif//GLM_PRECISION
#if(defined(GLM_PRECISION_HIGHP_FLOAT))
typedef highp_vec1 vec1;
#elif(defined(GLM_PRECISION_MEDIUMP_FLOAT))
typedef mediump_vec1 vec1;
#elif(defined(GLM_PRECISION_LOWP_FLOAT))
typedef lowp_vec1 vec1;
#else
/// 1 component vector of floating-point numbers.
/// @see gtc_vec1 extension.
typedef highp_vec1 vec1;
#endif//GLM_PRECISION
#if(defined(GLM_PRECISION_HIGHP_DOUBLE))
typedef highp_dvec1 dvec1;
#elif(defined(GLM_PRECISION_MEDIUMP_DOUBLE))
typedef mediump_dvec1 dvec1;
#elif(defined(GLM_PRECISION_LOWP_DOUBLE))
typedef lowp_dvec1 dvec1;
#else
/// 1 component vector of floating-point numbers.
/// @see gtc_vec1 extension.
typedef highp_dvec1 dvec1;
#endif//GLM_PRECISION
#if(defined(GLM_PRECISION_HIGHP_INT))
typedef highp_ivec1 ivec1;
#elif(defined(GLM_PRECISION_MEDIUMP_INT))
typedef mediump_ivec1 ivec1;
#elif(defined(GLM_PRECISION_LOWP_INT))
typedef lowp_ivec1 ivec1;
#else
/// 1 component vector of signed integer numbers.
/// @see gtc_vec1 extension.
typedef highp_ivec1 ivec1;
#endif//GLM_PRECISION
#if(defined(GLM_PRECISION_HIGHP_UINT))
typedef highp_uvec1 uvec1;
#elif(defined(GLM_PRECISION_MEDIUMP_UINT))
typedef mediump_uvec1 uvec1;
#elif(defined(GLM_PRECISION_LOWP_UINT))
typedef lowp_uvec1 uvec1;
#else
/// 1 component vector of unsigned integer numbers.
/// @see gtc_vec1 extension.
typedef highp_uvec1 uvec1;
#endif//GLM_PRECISION
}// namespace glm
#include "vec1.inl"

2
glm/gtc/vec1.inl Normal file
View file

@ -0,0 +1,2 @@
/// @ref gtc_vec1
/// @file glm/gtc/vec1.inl