glSpline/glm/gtx/rotate_vector.inl
2018-09-12 18:53:34 +02:00

189 lines
3.8 KiB
C++

/// @ref gtx_rotate_vector
/// @file glm/gtx/rotate_vector.inl
namespace glm
{
template<typename T, precision P>
GLM_FUNC_QUALIFIER vec<3, T, P> slerp
(
vec<3, T, P> const & x,
vec<3, T, P> const & y,
T const & a
)
{
// get cosine of angle between vectors (-1 -> 1)
T CosAlpha = dot(x, y);
// get angle (0 -> pi)
T Alpha = acos(CosAlpha);
// get sine of angle between vectors (0 -> 1)
T SinAlpha = sin(Alpha);
// this breaks down when SinAlpha = 0, i.e. Alpha = 0 or pi
T t1 = sin((static_cast<T>(1) - a) * Alpha) / SinAlpha;
T t2 = sin(a * Alpha) / SinAlpha;
// interpolate src vectors
return x * t1 + y * t2;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER vec<2, T, P> rotate
(
vec<2, T, P> const & v,
T const & angle
)
{
vec<2, T, P> Result;
T const Cos(cos(angle));
T const Sin(sin(angle));
Result.x = v.x * Cos - v.y * Sin;
Result.y = v.x * Sin + v.y * Cos;
return Result;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER vec<3, T, P> rotate
(
vec<3, T, P> const & v,
T const & angle,
vec<3, T, P> const & normal
)
{
return mat<3, 3, T, P>(glm::rotate(angle, normal)) * v;
}
/*
template<typename T, precision P>
GLM_FUNC_QUALIFIER vec<3, T, P> rotateGTX(
const vec<3, T, P>& x,
T angle,
const vec<3, T, P>& normal)
{
const T Cos = cos(radians(angle));
const T Sin = sin(radians(angle));
return x * Cos + ((x * normal) * (T(1) - Cos)) * normal + cross(x, normal) * Sin;
}
*/
template<typename T, precision P>
GLM_FUNC_QUALIFIER vec<4, T, P> rotate
(
vec<4, T, P> const & v,
T const & angle,
vec<3, T, P> const & normal
)
{
return rotate(angle, normal) * v;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER vec<3, T, P> rotateX
(
vec<3, T, P> const & v,
T const & angle
)
{
vec<3, T, P> Result(v);
T const Cos(cos(angle));
T const Sin(sin(angle));
Result.y = v.y * Cos - v.z * Sin;
Result.z = v.y * Sin + v.z * Cos;
return Result;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER vec<3, T, P> rotateY
(
vec<3, T, P> const & v,
T const & angle
)
{
vec<3, T, P> Result = v;
T const Cos(cos(angle));
T const Sin(sin(angle));
Result.x = v.x * Cos + v.z * Sin;
Result.z = -v.x * Sin + v.z * Cos;
return Result;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER vec<3, T, P> rotateZ
(
vec<3, T, P> const & v,
T const & angle
)
{
vec<3, T, P> Result = v;
T const Cos(cos(angle));
T const Sin(sin(angle));
Result.x = v.x * Cos - v.y * Sin;
Result.y = v.x * Sin + v.y * Cos;
return Result;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER vec<4, T, P> rotateX
(
vec<4, T, P> const & v,
T const & angle
)
{
vec<4, T, P> Result = v;
T const Cos(cos(angle));
T const Sin(sin(angle));
Result.y = v.y * Cos - v.z * Sin;
Result.z = v.y * Sin + v.z * Cos;
return Result;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER vec<4, T, P> rotateY
(
vec<4, T, P> const & v,
T const & angle
)
{
vec<4, T, P> Result = v;
T const Cos(cos(angle));
T const Sin(sin(angle));
Result.x = v.x * Cos + v.z * Sin;
Result.z = -v.x * Sin + v.z * Cos;
return Result;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER vec<4, T, P> rotateZ
(
vec<4, T, P> const & v,
T const & angle
)
{
vec<4, T, P> Result = v;
T const Cos(cos(angle));
T const Sin(sin(angle));
Result.x = v.x * Cos - v.y * Sin;
Result.y = v.x * Sin + v.y * Cos;
return Result;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER mat<4, 4, T, P> orientation
(
vec<3, T, P> const & Normal,
vec<3, T, P> const & Up
)
{
if(all(equal(Normal, Up)))
return mat<4, 4, T, P>(T(1));
vec<3, T, P> RotationAxis = cross(Up, Normal);
T Angle = acos(dot(Normal, Up));
return rotate(Angle, RotationAxis);
}
}//namespace glm